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Previous results on reduced density matrices of quantum gases are used to obtain theorems on the 
existence and analyticity of Green's functions. 

In this article we point out that Ginibre's results 
on the reduced density matrices of quantum gases I 
have immediate implications for the existence and 
analyticity of Green's functions. If HA is the Hamil­
tonian in the bounded region A, we define Green's 
functions by 

Gixl ,"', Xm; ~I"", ~m) 
= Z-I Tr (AI(xI)e-(~2-h)HA 

X A2(X2) ... e-(~m-~m-l)HAAm(xm)e-(PHl-~m)HA), 

where Z = Tr e-PHA and 

Aixk) = a*(x~l) ... a*(x~p(k)a(x~l) ... a(x~q(k)' 
Let fPk E V«fR V)p(k)H(k) for Fermi statistics, or 
fPk = fP~fP~ with fP~ E V(fR Vp(k), fP~ E V(fR Vq(k) for 
Bose statistics; we write 

X G A(XI, ... , Xm; 'I, ... , ~m)' 

In the case of a system of particles interacting 
through a suitable pair potential <1>, and for small 
activity, the operator e-lHA, with A > 0, may be 
defined in terms of Wiener integrals and is of trace 
class. The operators e-lHAAk(xk)e-lHA can also be 
expressed in terms of Wiener integrals and are of 
trace class. 

When A is complex and Re A> 0, e-lHA is defined 
and analytic; therefore G A is an analytic function of 
the complex variables ~k = {3k - ilk in the domain 

~ = {al'''', ~m):{31 < ." < {3m < {31 + {3}. 

If II = ... = tm , and {31 < ... < {3m < {31 + {3, G A 
can be expressed in terms of Wiener integrals and it 
follows from Ginibre's analysis2 that, when A ->- 00 

(e.g., A is a sphere centered at the origin and with 
radius tending to infinity), 

GA(Xl ,"', xm; (3l"", (3m) 

->- G(xl ,"', Xm; 131,'" ,13m) (I) 

uniformly on compacts with respect to XI' ... , Xm, 
and 

G'P({3 ... (3 ) ->- G'P({3 ... (3 ) A 1, 'm 1" m 

= f dXI ... dXmfPI(XI) ... fPm(Xm). 

x G(XI' ... ,Xm; (31' ... ,(3m)' (2) 

Proposition 1,' There exists a function 

G(xl ,'" ,Xm ; ~I"" ,'m), 
analytic with respect to aI, ... , 'm) E~, and such 
that 

lim GA(XI , ... ,Xm; '1' ... , 'm) 
A .... 00 

= G(XI,"', Xm; 'I"'" 'm) 

uniformly on compacts with respect to XI' ... , Xm, 
~l> ••• , 'm· Furthermore, if aI, ... , ~m) E~, 

lim Gxe'l, ... , 'm) 
A .... 00 

= G'Pe'I"", ~m) 

= f dXI ... dXmfPI(XI) ... fPm(Xm) 

X G(xl ,"', Xm; 'I"", ~m)' 

We notice first that ~ is the union (over n > 0) of 
the sets 

J(,n = {al"", 'm) E~:{32 - PI ~ f3/2n,"', 

{3m - {3m-1 ~ {3/2n, {3 + {31 - {3m ~ {3/2n}. 

If ('I' ... , ~m) E J(,n, we may express GAin terms of 
operators e[itk-U/4n)P]H A Ak(xk)e-Wk+U/4n)P)HA, and 

e-lHA with 0 < A < {3. Using Holder's inequality3 we 
find an upper bound for IG AI in terms of the expressions 

Z-l Tr ([e-(1!4n)PHAAixk)* 

x e-(1f2n)PHAAk(Xk)e-(lf4n)PHAt} , 

which are known by (1) to have a limit when A ->- 00. 

We may thus assume that G A is bounded on each J(,n 

uniformly with respect to II and XI"'" Xm in a 
compact, and the convergence of G A on the real points 
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of i) implies its uniform convergence on the com­
pacts of i). The uniformity of the convergence with 
respect to Xl' •.. , Xm on compacts follows from the 
uniformity of (1). 

The proof of the convergence of G~ proceeds like 
the proof of the convergence of G A and shows in 
particular that the limit of G~ is a bounded multilinear 
functional of CfJl"", CfJm (Fermi) or CfJ~,,·· , CfJr;,. 
(Bose) on the product of the relevant V spaces, 
identification of the limit follows from (2), taking 
CfJl' ... , CfJm with compact supports. 

Proposition 2: Let m = 2 and let the pair potential 
<I> E V(lW) n V(lW). Then G'" extends to a bounded 

continuous function on i) such that 

lim GX('l, '2) = G"'('l' '2) 
A-> 00 

uniformly on the compacts of the closure i) of i). 
The operators Ak( CfJk)e-JHA are of trace class [con­

sider e-AHAAi CfJk)* Ak( CfJk)e-AHA] and, if f32 = f3l or f32 = 
f3l + f3, we have 

IG~('l' '2)1 ~ [GlAG2A]!, (3) 

GkA = Z-l Tr ([Ai CfJk)* Ai CfJk) 

+ AiCfJk)Ak(CfJk)*]e-PHA}. (4) 

We assume first Bose statistics. The reduced density 
matrices are integral kernels of bounded operators in 
V. When (An) tends to infinity, these bounded opera­
tors form a bounded sequence converging in the 
strong operator topology. 1 Therefore, there exists 

C > ° such that 

GkAn ~ C f dXk I CfJixk) I 2 
(5) 

for all n. Since G~ is a~lytic and bounded, (3) holds 

for all aI' ... , '2) in i) and, using (5), this gives 

IGAn('l, ~2)1 ::;; C II IPll12 II CfJ21i2 (6) 

for all n, and aI' '2) E i). In the case of Fermi 
statistics, (6) holds again (with C = 1) because 

IIAi CfJk)11 ~ II CfJk112' 
In view of (6), it suffices to prove the proposition when 
Ak( CfJk) is of the form 

AiCfJk) = a*("P~') ... a*["P~p(k)]a("P~')' .. a["P~q(kJl, 

where "P~," . ,"P~q(k) are of class C2 with compact 
support. 

We have 

~ G'A = Z-l Tr {Al(CfJl) 
d'2 

X e-(~2-~1)HA[A2(CfJ2)' HA]e-(P+~C~2)HA}, 

and therefore 

I d~2 G'A I ::;; [GlAG;A]!, 

where G2A is given by (4) with Ak(CfJk) replaced by 
[A2(CfJ2), HA]. Since "P~l"", "P;q(2) are of class C2 
with compact support, the commutator of A 2( CfJ2) 
with the kinetic energy part of HA is again of the form 
A (CfJ). In view of this, G~A is a sum of integrals of re­
duced density matrices G~ (Xl' ... , x r ) multiplied by 
continuous functions "P(Xi ) , with compact support, 
and the pair potential <I>(Xk - Xj)' The pair potential 
appears as factor 0, 1, or 2 times; if <I>(Xk - Xj) 
appears, there also appears a factor "P(xj ) or "P(xk ); 

for each variable Xi in G~ (Xl' ••• , xr ) which does not 
appear in a factor <I>(x j - Xi), there is a factor "P(xi ). 

Using the condition <I> E V(IW) n V(IW) and the 
fact that the reduced density matrices G~ are bounded 
functions uniformly in AI, we obtain a bound on 
G~A which is independent of A. Therefore 

I ~G"'I = I~G"'I d'2 A d'l A 

is bounded on i) uniformly in A. The convergence of 
G~ in i) imp~s then its uniform convergence on the 

compacts of i). 

Remark 1: Let m = 3, <I> E V(IW) n V(IR V). In 
the case of Fermi statistics, G'" extends to a bounded 

continuous function on i) such that 

lim G~Gl' '2' '3) = G"'('I' '2' '3) 
A->oo 

uniformly on the compacts of the closure i) of ~. 
To estimate IdG~/d'il it suffices to consider the 

expression 

Z-l Tr {e(-fJ+it)HAlA. H ]eit'HAA .eit"HAA l 
"A 1 lcf 

and similar ones, where [Ai' H A ] and A j , Ak are 
circularly permuted. If [Ai' HA ] occupies the middle 
position, we rewrite the expression in terms of 
[A j , H

A
] and [A k , HA]. The rest of the argument 

goes as for m = 2 (using the boundedness of A j ). 

Proposition 3: In the case of Fermi statistics, 
introduce the operators 

Ai CfJk ,jk) = f dt!it)eitHAAi CfJk)e-itElA, 

where fk E V(IR), then the limit 

lim Z-1 Tr (At(CfJl ,jl) ... Am(CfJm ,fm)e-PHA) 
A->oo 

exists. 
It is sufficient to prove this for fk of class Cl with 

compact support. We construct Green's functions 
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with the operators A k( f{Jk ,fk) instead of 1i f{Jk), and 
use the fact that the derivatives of these functions are 
bounded in i> uniformly with respect to 1\. 

Remark 2: Proposition 3 has obvious implications 
for the description of time evolution of a dilute Fermi 
gas. It does not, however, exhibit this time evolution 
as a group of automorphisms of the C* algebra of the 
anticommutation relations. Streater4 and Hepp5 have 
shown that such a group of automorphisms exists for 
some nonlocal interactions. 

JOURNAL OF MATHEMATICAL PHYSICS 

I am indebted to J. Ginibre for helpful discussions; 
I also wish to thank K. Hepp for explaining to me his 
results before publication. 

1 See J. Ginibre, J. Math. Phys. 6, 238,252, 1432 (1965); in Sta­
tistical Mechanics, edited by T. Bak (Benjamin, New York, 1967), 
p.148. 

2 This result is contained in C. Gruber, thesis, Princeton University, 
1968 (unpublished); see also J. Ginibre and C. Gruber, Commun. 
Math. Phys. 11, 198 (1969). 

3 See N. Dunford and J. Schwartz, Linear 0 peratars (I nterscience, 
New York, 1963), p. 1105, Lemma XI. 9-20. 

4 R. F. Streater, Commun. Math. Phys. 7, 93 (1968). 
5 K. Hepp (unpublished). 
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A study is undertaken to cast light on difficulties, which arose in the first two papers of this series, 
pertaining to the occurrence of negative probabilities in the weak-coupling solution of the generalized 
Prigogine-Resibois master equation for the model of the Wigner-Weisskopf atom in a one-dimensional 
radiation field. The Schrodinger equation is solved exactly for the model with the initial condition for 
spontaneous emission, and then the weak-coupling approximations to the solution, both for an infinite 
and for a finite system, are derived as inverse Laplace transform integrals. An extensive analysis, 
theoretical and numerical, of these is undertaken, and comparison is made with the corresponding 
results based on the master equation. In particular, quantitative estimates of the Poincare recurrence 
times for finite systems are made. It is found that considerable differences exist between the statistical­
mechanical and quantum-mechanical results, but that both manifest nonanalyticity in the coupling 
parameter as it tends to zero. Suggestions are given for further work toward the resolution of these 
discrepancies and a better understanding of the weak-coupling limit. 

I. INTRODUCTION 

The work of this paper is a continuation of that of 
two previous papersl,2 by the authors, hereafter 
referred to respectively as I and II. Certain problems 
were considered there whose existence in general had 
been pointed out by Zwanzig3 and which arose in 
particular in the treatment, by the methods of non­
equilibrium statistical mechanics, of the Wigner­
Weisskopf atom, a model which consists of a two-level 
quantum system in interaction with a massless boson 
field, always taken as one-dimensional. In I, the 

possibility of nonexponential behavior was discussed 
for the problem of spontaneous emission-the 
Prigogine-Resibois master equation4 for the diagonal 
elements of the density matrix was solved in the 
approximation of weak coupling and it was seen to 
give rise to an exponential decay overlaid by a 
(considerably smaller numerically) sequence of slowly 
damped oscillations. The separate question was 
treated in II of the behavior of finite systems, that is, 
those for which the usual "thermodynamic limit" of 
statistical mechanics, with its assumption of unlimited 
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were considered there whose existence in general had 
been pointed out by Zwanzig3 and which arose in 
particular in the treatment, by the methods of non­
equilibrium statistical mechanics, of the Wigner­
Weisskopf atom, a model which consists of a two-level 
quantum system in interaction with a massless boson 
field, always taken as one-dimensional. In I, the 

possibility of nonexponential behavior was discussed 
for the problem of spontaneous emission-the 
Prigogine-Resibois master equation4 for the diagonal 
elements of the density matrix was solved in the 
approximation of weak coupling and it was seen to 
give rise to an exponential decay overlaid by a 
(considerably smaller numerically) sequence of slowly 
damped oscillations. The separate question was 
treated in II of the behavior of finite systems, that is, 
those for which the usual "thermodynamic limit" of 
statistical mechanics, with its assumption of unlimited 
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extent and an infinite number of degrees of freedom, 
has not been taken. This treatment, using the same 
method of the master equation and of a weak-coupling 
scheme, produced a solution which manifested a 
complicated time dependence and, in particular, the 
existence of Poincare recurrences. What the results of 
both I and II had in common was the appearance of 
contributions to the solutions of the master equation 
which were not analytic in the coupling constant 
when that quantity tended to zero. This effect, which 
appeared to be essentially involved in the weak­
coupling approximation, gave rise to an unusual and 
disturbing feature, namely that the diagonal elements 
of the density matrix, quantities which, as probabil­
ities, should always lie between zero and unity, could 
become negative. In this paper, an alternative approach 
to the same problem is presented which obviates this 
difficulty. 

The model to be discussed has already been specified 
in I and II. The Hamiltonian [Eq. (1-6)] is 

H = f1OCOC* + f2OC*OC + I [thw;.(a!a). + 1)] 
). 

+ I (h!oc*a). + h).oca!), (1) 
). 

in which f1' f2 are respectively the energies of the 
ground state 11) and the excited state 12) of the two­
level system. The operators a;.. and oc are defined by the 
following equations: 

oc = 11) (21, 

oc* = 12) (11, 

(n).1 a). 1m).) = [2(n). + l)]i t5Kr(m). - n). - 1) 

= (m;..1 a! In).). 

The state In).) is one with n;.. (= 0, 1, 2, ... ) photons 
in the Ath mode, and t5Kr

( ••• ) denotes a Kronecker 
delta. Following the arguments of I and II, we shall 
choose the coupling h;.. such that 

Ih;..12 = 1i2occEjL, 

where liE = f2 - f1' C is the velocity of light, and L 
is the length of the system. The normal modes A 
of the boson field can be characterized by the wave 
numbers k;.. which satisfy the following relations: 

w;.. = clk;..l, 

k 
_ 27Tn 

;'-I:' 
where the integers n replace A as the label. The 
dimensionless coupling constant oc replaces, for a 
one-dimensional system, the fine-structure constant 
of quantum electrodynamics. The states of the 

system, between which matrix elements of the Hamil­
tonian [Eq. (1)] are to be taken, are given by 

Ii; {n;.}) = Ii) II In;.), 
;'EA 

with i = 1,2 and n;. = 0, 1,2,··· for each mode A. 
It should be noted that, for the problem of sponta­
neous emission, the initial state of the system is chosen 
as 

12; {O}). (2) 

Further, the Hamiltonian admits no terms propor­
tional to either oca;.. or oc*a1 which would induce 
nonenergy-conserving transitions. 

With the model that we have now specified, an 
expression was obtained in II [Eq. (11-40)] for that 
diagonal element of the density matrix which expresses 
the probability at any moment that the 2-level system 
be in its excited state, if the initial state (2) is taken 
at time zero. [This expression is reproduced in Eq. 
(43).] It consists of a constant term plus a sum of terms 
each of which depends on time through a cosine 
factor. The frequencies appearing in these factors are 
all linearly independent. Because of this fact, this sum 
of time-dependent terms assumes negative values as 
frequently as positive ones, and its greatest lower 
bound has the same absolute value as its least upper 
bound. Thus, certainly when the constant term in the 
expression is less than i-which it is for most choices 
of the parameters of the system-the probability will 
be negative for some times. If, however, the sponta­
neous emission problem is treated, not by the weak­
coupling master equation, which is an approximation 
to the Liouville-von Neumann equation for the 
density matrix, but by the methods of quantum 
mechanics starting from the Schrodinger equation for 
the state vector of the system, then the probability of 
finding the system in a given quantum state will be 
the square of the modulus of some complex number 
lying on or within the unit circle, and so will lie 
between zero and unity, whether or not a weak­
coupling approximation is made. This remark 
motivates the study of the present paper. The problem 
of the spontaneous emission of the Wigner-Weisskopf 
atom is dealt with by quantum mechanics, both fora 
finite system and the limiting case of an infinite one; 
within the framework of weak coupling, a detailed 
comparison is made between the different expressions 
resulting from this treatment and those of I and II. 
It should be emphasized that we may expect answers 
of an essentially different structure here, since it is 
reasonable to suppose that the frequencies which will 
appear in the quantum-mechanical treatment will be 
linearly independent, just like those previously 
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obtained, and so the time-dependence of the prob­
ability cannot be of t~e same form as that of Eq. 
(11-40). It will be seen that this is indeed so. 

The next section contains the formulation of our 
problem in terms of the Schrodinger equation, which 
is then solved by a resolvent technique very similar to 
those used in the statistical-mechanical theory based 
on the master equation. With this solution to hand, a 
weak-coupling scheme is introduced and, in Sec. III, 
the dynamics presented in the limit of a large system. 
Some substantial differences from the results of I are 
pointed out. In Sec. IV, the finite system is treated. A 
solution analogous to that of II is obtained and it is 
seen to differ from it in many respects. These are 
highlighted by a detailed discussion of the asymptotic 
form of the result for large but not infinite systems. 
The actual numerical estimation of the solution is also 
presented in this section. This makes possible the 
investigation of Sec. V, where there is made a char­
acterization of the various expressions previously 
obtained which facilitates a comparison of their 
properties with those of the results of II, as well as a 
quantitative discussion of the phenomenon of Poin­
care recurrences. The conclusions to be drawn from 
this work are discussed in the final section, in which 
an attempt is made to elucidate the nature of the 
weak-coupling approximations used. Further work is 
suggested which might lead to a better understanding 
of the problems-important ones, we feel, in the 
study of irreversible processes-which arise in 
approximate or incomplete descriptions of the dy­
namics of large systems. 

II. THE QUANTUM-MECHANICAL FORMULA­
TION OF THE PROBLEM 

The Schrodinger equation for the time evolution of 
the state vector I'¥{t» is 

iii ~ I'¥(t» = H I'¥{t», (3) at 
for which the solution is 

I'¥(t» = e-iHI
/

1i I'¥(O». (4) 

To make this solution explicit, we must specify the 
Hilbert space on which it is defined and provide this 
space with a suitable orthonormal basis. It is clear 
from the Hamiltonian, Eq. (1), that if the initial 
condition (2) appropriate to the problem of sponta­
neous emission is chosen, the only states accessible 
to the system are those for which the two-level atom is 
de-excited in the presence of one excitation in some 
mode of the radiation field, and that for which the 
atom is excited in the absence of any excitation of the 
field. Let us write these states respectively as IA), 

where the label A ranges over the modes of the field, 
and IX). The Hilbert space spanned by the IA) and 
IX) is then taken as that on which Eq. (4) is defined. 
The orthonormality relations given by 

(A I A') = b,Ll:, 

(A IX) = 0, 

(X IX) = I 

follow from the fact that these states are nondegenerate 
eigenstates of the unperturbed Hamiltonian Ho such 
that 

Ho IX) = liE, 

Ho IA) = IiwA , 

where the zero of energy is chosen as that of the de­
excited atom plus the zero-point energy of the field. 
Here 

On the Hilbert space of the problem, the complete­
ness relation 

IX)(XI + Z IA)(A\ = 1 (5) 
A 

will also hold. 
The Eq. (4) may be expressed in terms of the re­

solvent operator 
(J - HIIi)-l 

as follows: 

I'¥(t» = - _1 . r dJe-iJ1(J _ !!.)-11'¥(0», 
2m .Ie Ii 

where the Bromwich contour C is taken parallel to the 
positive direction of the real axis of J and above all 
singularities of the integrand. For the case of spon­
taneous emission we take I'¥(O» = IX), and so the 
problem will be solved if the expression 

(J - HIIi)-l IX) 

can be found. To this end, let us write 

(J - HIIi)-l IX) = IS(J, X», (6) 
and then 

(J - Hili) IS{J, X» = IX). (7) 

The ket IS(J, X» can be expanded in the following 
way: 

IS(J, X» = Sv,,\,(J, X) IX) + z SA{J, X) IA). (8) 
A 

When this is done, there results the following set of 
linear equations for the coefficients Sx{J, X) and 
SA(J, X): 

( hA.J2) (J - E)S 1'<,(3, X) + z - - S;.(J, X) = 1, (9) 
• A Ii 

( hA.J2) - -/i- S .N'(J, X) + (J - wA)S;.(J, X) = O. (10) 
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We solve these equations and find 

h;.J2 
S kJ, X) = S xCl, X), 

n(;; - w;.) 

S.'f(;;' X) = [;; - E -.2 22 1h;.12 J-1

. (11) ;. n (;; - w;.) 

The main object of study will be (X I lJ1'(t» , which is 
given by 

(oN' I lJ1'(t» 

= - ~ (d;;e-iJtS x(;;, X) 
27T1 Jc 

= - _1 (d;;e-iJt[;; _ E - L 221h;.12 J-1
• (12) 

27Ti Jc ;. n (;; - w;.) 

It can be seen that the choice of Ih;.12 used in I and II, 
namely 

(13) 

will cause the summation in Eq. (12) to diverge with 
the usual frequency spectrum 

W;. = 127Tcn;./LI, n;. an integer, 

and so the following artifice will be used: The Ih,,12 

will be made proportional to a negative power -p of 
W;. in such a way that, for W;. = E, it takes the value 
given by Eq. (13). Hence, we put 

Ih;.12 = n2I1.c1
- PE1+P/L Ik;.lp. (14) 

This device is similar to that used in I to avoid the 
ultraviolet divergence, and here, for this reason and 
also to avoid the infrared divergence, we must take 
O<p<1. 

It may seem surprising that an exact solution, Eq. 
(12), has been obtained from a Hamiltonian involving 
a nontrivial interaction term between a two-level 
system and a field, and it may not be out of place to 
discuss this point here. The result has been obtained 
because it was possible, with the specific choice of the 
initial state vector 1lJ1'(O», to restrict attention to the 
Hilbert space spanned by IX) and the IA). Further, 
the Hamiltonian excludes all processes which lead to 
unlimited creation of photons of the field, and in this 
way any consideration of a Fock space for these is 
obviated. Finally, the absence of any direct photon­
photon interaction means that the infinite set of 
equations (9, lO) can be solved explicitly. There is 
another way to obtain Eq. (12), which also casts 
light on the matter. By an analysis exactly analogous 
to that of the third section of I, a "master equation" 
can be constructed from the Schrodinger equation (3) 

for the quantity (X 1lJ1'(t»: 

:t (X I lJ1'(t» = -iE(X I lJ1'(t) 

+ fdrC(r)(X I lJ1'(t - r». (15) 

This equation may be solved by the method of 
Laplace transforms to yield 

s x(;;, X) = - [1p(;;) + i(;; - E)]-I($ I lJ1'(O» , (16) 

where the "collision operator" 1p(z) is the Laplace 
transform of C(r) in Eq. (15) and is given by a 
perturbation expansion 

1 00 [1 In. 1p(z) = 'Ie. .2 (XI HI (Ie. H) HI IX)irr" (1,,) 
1ft n=1 ft;; - 0 

Here the suffix "irr" means that when the matrix 
element is expanded using the relation (5), the term 
IX) (XI is to be omitted. But then one can see that, 
since 

(AI HIlA') = 0 for A¥: A', 

only the first term of Eq. (17) will be nonvanishing. 
Substitution of this term into Eq. (16) yields the result 
Eq. (11). 

Finally, in this section, the summation 

L 21h;.12 
;. n2(;; - w;.) 

will be performed in the limit of an infinite system, 
i.e., where L -+ 00. With the expression (14) for Ih;.12 
the sum becomes 

which in the limit L -+ 00 goes over to an integral 

_ ~ I1.E1+P (00 dk 1 
7T Jo P(k -;;) 

= _2I1.El+P;;-Pei P1T csc (p7T) (19) 

for 1m;; > O. In Eq. (19), arg;; is chosen to lie 
between zero and 7T. In this limit, then, the solution 
(12) is 

(X I lJ1'(t» 

1 1 'W . = - -~ d;;e-'oi[;; - E + 2I1.E2+P;;-Pe'P1T csc (p7T)]. 
27T1 c 

III. THE LIMIT OF AN INFINITE SYSTEM 

The calculations performed from this point on will 
all be, in some sense, in the limit of weak coupling. 
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This limit has been discussed at length in I and II for 
the statistical-mechanical formalism which springs 
from the Liouville-von Neumann equation. It has 
been seen there that the introduction of a scaled 
dimensionless time 

T = exEt 

is necessary for the proper taking of the limit. In 
terms of T, then, Eq. (12) is, by the use of the result 
(19), 

(.N' I 'Y( T» 

= __ 1_ id~e-* ex . , 
27Ti c ex~ - 1 + 2ex1

- Pe'P1T csc (p7T~-P) 

(20) 
where 

~ = 1.... 
exE 

The usual procedure is now to let ex tend to zero and to 
call the result the weak-coupling solution. But Eq. 
(20) vanishes if this is done. The remedy is to extract a 
phase factor of 

which is the solution of the problem without inter­
action and which, when written as 

has no weak-coupling limit. When this is done, the 
result is 

eiE\.N' I 'Y(t» 

= - ~ idye-iJtLl' + 2exEl+PeiP1T csc p7T(Y + £)-p]-l 
27Tl c 

= - ~ id~e-iST[~ + 2eiPlT csc p7T(ex$ + 1)-1']-1 
2m c (21) 

in terms of dimensionless variables. The limit of 
,ex -... 0 can now be taken, yielding the weak-coupling 
solution 

eiEt(.N' Io/(T» = - ~ idqe-*[~ + 2eiP1T csc (p7T)]-l 
27T/ c 

= exp (2iT csc (p7T)ei 1'1T]. (22) 

The probability that the state I.N') be occupied at the 
time denoted by T is given by 

I(.N' I o/(T»12 = leiEt(.N' I 'Y(T»12 = peT) 

say, in conformity with the notation of the density­
matrix formalism. Then, 

peT) = lexp [2iT csc (p7T)eip1TW 
= exp [2 Re (2iT csc (p7T)eip1T )] 

= e-4T
• (23) 

This is the usual result. 

It is interesting to see if we can go beyond the 
result given by Eq. (23) and obtain expressions akin 
to those of I which manifest a nonexponential contri­
bution to p( T). That contribution arose as a result of a 
perturbative solution of the generalized master 
equation in which only the leading term of the 
perturbation series was taken, but in which no ex -... 0 
limit was imposed. It has been seen in the preceding 
section that this kind of approach to the Schrodinger 
equation leads to the exact result. Another kind of 
perturbation theory would thus be necessary to 
achieve results similar to those of 1. Such a theory is 
that based on the identity 

of which the right-hand side can be iterated 

y - - = L Y - - - Y - - . (24) ( H)-l 00 ( HO)-l[Hl( Ho)-lJn 
Ii n=O Ii Ii Ii 

With this expression, Eq. (6) gives 

The n = 1 term vanishes, and so the first correction 
to the unperturbed result (y - E)-1 comes from the 
next term. Accordingly we shall take as the lowest­
order perturbation solution 

s "w(y,.N') 

= (y - E)-l{ 1 + (.N'I [~l(y - ~Orlrl.N')} 

= (y _ E)-1 (1 + (y _ Erl L 22 I h .<12 ) 
A Ii (y - w .. ) 

= (y - E)-l[l - 2exEl+P(y - E)-1y- Pei P lT esc (p7T)] 

by use of Eq. (19) for the infinite system. From this 
expression is obtained easily 

eiE\.N' I 'Y(r» = 1 + eiP1T 
esc (P7T)id~ e-i;T . 

7Ti c e(ex~ + 1)P 
(26) 

The integral in the right-hand side can be evaluated by 
closing the contour by a large semicircle in the lower 
half-plane of ;, and then it becomes the sum of two 
terms, one from the residue of the double pole at 
~ = 0 and the other from the integral of the dis­
continuity of the integrand across a cut from ~ = 
-1/ ex to ~ = - 00 along the negative real axis. With 
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this, Eq. (26) yields 

eiEt(X I ty(T» 

= 1 + i PlT [2iTCSC(P1T) + 2a.pCSC(p1T) 

- ~ rlXd~eiT/~(_e_)PJ. (27) 
1T Jo IX - ~ 

The cut integral is now indeed seen to furnish a 
contribution which is nonanalytie in oc at a. = 0 and 
so might be expected to yield a non exponential 
contribution to peT) similar to that in Eq. (1-62). 
However, although the present perturbational scheme 
has given rise to a nonanalyticity, it is of a different 
kind from that which arose in 1. First, the terms on the 
right-hand side of the expression (27) other than the 
cut integral are not exponential. It is apparent from 
the nature of the expansion (24) that no finite order 
of that perturbation can yield an exponential term of 
the sort obtained in Eq. (22); rather only the sum 
of the contributions from the poles at ~ = 0 which 
occur in each successive term of the expansion (25) 
will give rise to an exponential contribution. This is the 
price paid for obtaining the cut integral in Eq. (27). 
On the other hand, from the structure of the remaining 
terms of that equation it is clear that the final exponen­
tial term will have the form 

1 + 2a.piPTr esc (p1T) + O(a.2)] 

X exp [2iT esc (p1T)i pTr + O(a.)], 

which yields, for p = 0, the same contribution, 
namely 

(1 + ~)e-4r, 

as is obtained in Eq. (1-62) for this order from the 
statistical-mechanical treatment. Second, if the square 
of the modulus of the right-hand side of Eq. (27) is 
taken, the nonanalytic contribution to p( T) which 
results from the cut integral is not at all of the same 
form as the nonexponential term in Eq. (1-62). Thus, 
although the present analysis has shown considerable 
similarities to that of I, the results obtained are 
essentially different. The two perturbational schemes, 
while each gives rise to nonanalytic terms, yield 
expressions for peT) which cannot be considered as 
comparable. 

IV. THE FINITE SYSTEM 

We shall now return to the general solution, Eq. 
(12), and consider the weak-coupling dynamics when 
L is kept at a finite value. This entails an evaluation of 
the infinite series (18). It is shown in the Appendix 

that the following result holds: For Re a < O,lm < 0, 
00 

~ [nP(n + a)r1 

n=O 

= 1T( _a)-PeiplT esc (p1T) + 21Ti( _a)-P/(eZTria - 1) 

+ 2100 

dy[yP-I(e2TrIi - 1)(a2 + l)rl 

x {cos (p1T/2) + (Y1Ta)-1 sin (p1T/2) 

X [21Ta 2 - y-l(e2TrIi - 1)(a2 + l)]). (28) 

From this, the series (18) can be calculated. First, it is 
convenient at this stage to rewrite Eq. (18) in terms of 
the dimensionless scaled variables which facilitate the 
taking of the weak-coupling limit. Not only should 
one use 

e = ;;!a.E 

[see Eq. (20)], but, as has been seen in II, the length L 
should appear through the variable 

(J'2 = ocEL!c. 

The series then becomes 

- ~ nP n - - . 
4a.1-PEa2p 00 [( (J'2~)]-1 

(21T)P+l n=l 21T 
(29) 

The oc -)- 0 limit in Eq. (12) requires, just as in the 
infinite system calculation, that the factor e-iEt be 
divided out, and so it is not the expression (29) itself 
which will be needed, but rather (29) with; replaced 
by ~ + 1!a., so as to obtain the result corresponding 
to Eq. (21). This leads to the result 

s(~) :: a.-P.f {np[n _ (J'2 (~ + 1/a.)]}-1 
n=l 21T 

(30) 

= 1T[(J'2(OC~ + 1)/21T]-PeiPlT csc p1T 

+ 21Ti[(J'2(a.~ + 1)/21TtP(e-[0'2(Hl/rx)] - 1)-1 

+ 2100dya.l-p{yp-l(e2lTlI - 1) 

x [a.2l + 4~2 (a.e + 1)2Jr1 

X {a. cos p1T _ 2 sin (P1T) 
2 ya2(a.~ + 1) 2 

X [(J'4 (a.e + 1)2 _ y-l(e2rr !l - 1) 
21T 

X (a.2y2 + 4~Z(a.~ + 1)2)J} (31) 

for lin; > 0, Re; > -1/°c. From Eq. (12), we 
obtain 

eiEt(X I 'Y(T» = __ 1 r d~e-*(; + 4(J'2p sm)-l 
21Ti Jc (21T)Pi-1 

(32) 
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This is the exact solution of the Schrodinger equation. 
At this point, we may let a2 become infinite and 
verify that Eq. (21) is recovered: 

lim [4a2P/(21T)V+l]S(~) = 2eiP1T csc p1T(IX~ + l)-P 
0'2~oo 

since, for 1m ~ > 0, e-iIT2(~+1/«) ---->- 00 as a2 ---->- 00, and 
in Eq. (31), the integrand is O(a-2). Now we may take 
the limit IX ---->- 0 in Eq. (31). It can be remarked that 
this limit could not be taken at an earlier stage, since 
it is evident from Eq. (30) that the limit cannot be 
defined without explicitly performing the summation. 
All that is needed is 

lim S(~) = 1T( a2/21T)-Peip1T csc p1T 

= 1T(;:rTcot p1T - cot ~2 (~ + 1/1X)} 

Again, as in the calculation of II, a nonanalyticity in 
rx has appeared for the finite system even in the weak­
coupling limit. The weak-coupling solution, from Eq. 
(32), is then 

iEt(X Io/(T» 

= __ 1 id~ 
21Ti c 

x e-*{~ + 2 [cot p1T - cot ~2 (~ + ~) Jf1. 
It is convenient to remove the term 2 cot p1T from the 
denominator of the integrand by extracting a further 
exponential factor of e-2ircotp". This yields the result 

iEte-2ircotp1T(.N' Io/(T» 

= - _1 id~ 
21Ti c 

x e-*[~ - 2cot ~(~ - 2 cot p1T +~) r1

. (33) 

To evaluate the integral in this expression, the contour 
C can be closed by a large semicircle in the lower half­
plane of ~. The singularities of the integrand within the 
closed contour are then the zeros of the expression 

~ - 2 cos (a2/2)a - 2 cot p1T + l/IX), (34) 

and these may be seen to be distributed along the 
real axis so that there is one in each interval of length 
21T/a2• The effect of the nonanalyticity (through the 
term 1/1X in the argument of the cotangent) and that of 
p (through the term 2 cot p1T) can be grouped into 

some phase angle, cp say, to be determined in a 
numerical calculation by the chosen values of p and rx, 
but for theoretical purposes essentially arbitrary. The 
expression (34) will now be written simply as 

~ - 2 cot (a2/2)(~ + cp). 

If a zero of this be denoted by ~q, then the residue of 
the integrand in Eq. (33) at ~q is 

e-i~qr[.!!.(~ _ 2 cot a
2 

(~ + cp»)1 J-1 

~ 2 ~L 
= e-i~qT{l + a2[1 + cot2 (a2/2)(~q + cp)]}-l 
= e-i~qr[l + a 2(1 + t~;W1 

by the condition that ~q be a zero. The expression (33) 
can thus be written 

e-iSqr 
~ (35) 
~q 1 + a2(1 + t~~) , 

where the summation runs over all the zeros ~q of 
Eq. (34). In the limit a2 ---->- 00, this expression can be 
evaluated by noticing that there is one ~q in each 
interval of length 21T/a2

, and thus replacing Eq. (35) 
by the Riemann integral 

Thus, in the limit, 

eiEt(X Io/(T» = e-2re2ircotp1T 

= exp (2iT csc p1TeiP1T) 

in accord with the result stated in Eq. (22). We shall be 
interested, as in the preceding section, in 

peT) = I(X 1o/(T»1 2
• 

From Eq. (35) there results 

peT) = 1 t 1 + a~~;~': t~;) 12 

= ~ [1 + a2
(1 + H!W1 

~q 

2 cos all - ~1l')T 

+ gqfsq, [1 + a2(1 + U!)][1 + a 2(1 + H!,)] 
= Pc + PT (36) 

say, in notation analogous to that of II, Sec. VII, for 
the two contributions to peT). 'The former, Pc> is 
independent of time and equal to the time average of 
peT), and the latter, PT, contains all information on 
the time dependence of the system. It can be seen at 
once that the result (36) has quite different structure 
from that of Eq. (11-40), the corresponding result 
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obtained from the Liouville-von Neumann equation. 
Firstly, the value of the right-hand side of Eq. (36) 
can never become negative, by virtue of the method of 
calculation. Secondly, the frequencies ~q - ~q' which 
appear in PT are by no means linearly independent, 
although the ~q, taken separately, are so, being the 
solutions of the transcendental equation 

a2 

~ - 2 cot - (~ + cp) = o. (37) 
2 

However, both results, Eqs. (36) and (11-40), give 
quasiperiodic expressions for p(T), as one would 
expect. 

An analysis similar to that of Sec. VI of II can be 
performed for Eq. (36). By replacing the ~q by 
2n1l'j a2 , with n ranging over the integers, an asymp­
totic expression for p( T) can be obtained for large 
(but not infinite) a2• First, for Pc there results from 
Eq. (36) 

+ro 
Pc r-.> L (n 211'2/a2 + a2r2 

n=-oo 

4 +ro 
= a4 L [n2 + (a2/1I')2r1 

11' n=-oo 

This result has to be compared with Eq. (11-35), 
where it is found that 

Pc r-.> (1 + 2a tanh 2a)-1 (39) 

is obtained from Eq. (1I-40) under similar assump-

1.0 

0.8 

0.6 
~ ... 
Q.. 

0.4 

0.2 

0.0 

0.0 2.0 4.0 
T 

tions. It is seen that the two expressions, Eqs. (38) 
and (39), are intrinsically different, in that Eq. (38) 
depends only on ()'2, while Eq. (39) depends only on a. 
Even in the asymptotic region, then, the two ap­
proaches leading respectively to Eqs. (36) and (II-40) 
are not coincident. Next, for PT, one obtains 

(
T) t'.,) +; +;, cos (211'/a2)(n - m)T 

PT ,4,4 (2 2 2/ 2)( 2 2 2/ 2 ' n~-ro m~-ro a + n 7T a a + m 11' a) 

where the prime indicates that the terms in which 
n = m are to be omitted from the double sum. On 
simplification, this sum becomes 

( ) 4( ~ cos (211'nT/a
2
»)2 

P7' T r-.> a ,4 2 2 4 
n~-ro n 11' + a 

ro 

- a4 L (n 211'2 + ()'4r2 (40) 
n=-oo 

= csch2 a2 cosh2 (a2 - 2T) - t csch2 a2 

- (1/2a2) coth a2 for T < a2. (41) 

This closed expression has no analog in the treatment 
of II, where the summations in Eq. (II-41) cannot be 
performed explicitly. When Eqs. (38) and (41) are 
grouped together, the full result is obtained, 

Pa,(T) = csch2 a2 cosh2 (a2 - 2T) for T < a2, (42) 

and where T> ()'2 the answer comes from observing 
that the summation in the first term of the right-hand 
side of Eq. (40) is periodic in T with period a2• The 
asymptotic expression (42) thus has none of the more 
intricate structure of the solution, Eq. (36), and is 
merely a periodic function which is graphed in Fig. 1. 

6.0 8.0 10.0 

FIG. \. A plot of the asymptotic expression. Eq. (42), for a2 = 10. The intercept at T = 0 is given by coth2 a2 = 1, and the value of Pa,(T) 
at T = a2/2 is csch2 a2 ~ O. 
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It is quickly seen that when (J'2 -+ 00 

( ) 
-47 

Pas T -+ e . 

We shall now return our attention to Eg. (36) itself. 
A numerical study of p(T) has been made, based on 
this equation. For the purposes of comparison with 
the results presented in II, two values have been 
chosen for (J'2, namely 1 and 10, and the function p(T) 
calculated for these values over a considerable range 
of T. It was necessary first of all to determine the 
locations of the solutions ~q of Eq. (37). This equation 
can be rewritten 

~ sin «(J'2!2)(~ + rp) = 2 cos «(J'2!2)(~ + rp), 

so that by calculating the left- and right-hand sides of 
this separately and noting where they coincide, 
numerical estimates of the ~q can be found. For the 
case (J2 = 1, the first 82 solutions on either side of the 
origin ~ = 0 were obtained, and for 0'2 = 10 the first 
404 solutions were obtained. An upper bound for the 
truncation error committed by restricting oneself to 
these numbers of terms in the summations of Eg. (36) 
can be obtained by noting the defect in p(O) from unity. 
When T = 0 all the cosines in TT have argument zero, 
and so the truncated higher terms in the sums have 
their maximum value. It is found that for p2 = 1, 
with 82 poles on either side of the origin taken into 
account, that p(O) = 0.9900 which corresponds to an 
error of 1 %. For 0'2 = 10, with 404 poles taken into 
account, p(O) = 0.9800 which corresponds to an error 
of 2 %. Since for positive values of T the arguments of 
the cosines will never be exactly in phase, the trunca-

tion errors can be expected to be much smaller after 
the initial moment. A further check on these errors is 
found by estimating the higher terms in Eg. (36) by 
their approximating integral. This means that, for 
(J'2 = 1, the contribution to p(O) from higher terms 
above the first 82 on either side of ~ = 0 is approxi­
mately 

-±-lro d~ ,.....,0.010. 
2n 251 2 + te 

For 0'2 = 10, the contributions from the terms other 
than the first 404 on either side are 

40 100 

d~ ,....., 0.020. 
2n 12211 + -}e 

This check thus yields the same error estimates as 
above. Finally, the phase angle rp was chosen as zero 
for most of the work, but checks were made with 
rp = n!2 for both (J2 = 1 and p2 = 10 to see if the 
choice of rp made an appreciable difference to the 
results when Pc and PT(T) were calculated from 
Eg. (36). 

In Fig. 2 we have plotted the dependence of PT(T) 
on T for (J2 = 10 and for a phase rp = O. A calculation 
for (J'2 = 10 with a phase rp = n!2 yielded results 
which were indistinguishable from those plotted in 
Fig. 2. On the other hand, it was found that for 
(J2 = 1, a change in phase from rp = 0 to rp = n!2 did 
produce a change in the profile of the PT(T) vs T curve. 
In Fig. 3 PTe T) vs T is plotted for 0'2 = 1 and rp = 0, 
and in Fig. 4 for 0'2 = 1 and rp = n/2. These results 
will be discussed in Sec. VI. 

1.0r---~-----r----.-----.----'-----.----'-----r----.-----, 

0.5 

0.0 

-0.5~--~--~~--__ L-__ ~ ____ ~ ____ L-__ -L ____ ~ ____ L-__ ~ 

0.0 5.0 10.0 15.0 20.0 25.0 

FIG. 2. A plot of pT(7) YS 7 computed for a2 = 10 and 'P = 0 using 404 pole locations. 
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1.0r---~-----r----'-----.----'~--~-----r----'-----r----' 

-I-

-0.5~--~----~----~--~~----~--~----~--~~----~--~ 
0.0 1.0 2.0 3.0 4.0 5.0 

FIG. 3. A plot of PZ.(T) vs T computed for (J" = 1 and rp = 0 using 82 pole locations. 

1.0r---~-----r----'-----.----.-----.-----.----,-----.---~ 

-l-
e::: 

0.0 

-0.5~--~----~----~--~~--~----~--~----~----~--~ 
0.0 1.0 2.0 3.0 4.0 5.0 

FIG. 4. A plot of pT(T) vs T computed for (J" = 1 and rp = 'TT/2 using 45 pole locations. 

V. PROPERTIES OF THE SOLUTIONS FOR FINITE SYSTEMS 

Two expressions have now been obtained for peT) in the region of weak coupling-the statistical-mechanical 
one, PL(r) say, given by Eq. (II-40), and the quantum-mechanical one, Ps(T) say, given by Eq. (36). For 
convenience, Eq. (11-40) will be rewritten here: 

PL('T') = (1 + 2(1 sinh 2(1 )-1 + .! 20~ cos ['T'(O~ + 42)!] 
cosh 2(1 - E n=102 + .i (1 

n (12 

X [1 + (_1)n (12 (02 + -..!.L)! + (12(02 + -..!.L)J-l (43) 
(1 - e2)! n 1 _ e2 4 n 1 _ e2 ' 
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where E is a nonanalyticity parameter [equal to 
cos (0'2/1X)] and the On are the successive positive roots 
of the transcendental equation (II-36), 

4 sin (0'20) = O[E - cos (0'20)]. 

It is of importance in the study of these two solutions 
to have a means of characterizing them so that the 
differences and similarities can be seen. The means 
chosen here will be to obtain the average frequency 
L(q) with which the solution p( T) achieves the value q. 
For several reasons this is a convenient characteriza­
tion. The occurrence of negative values of PL(T) will 
be evidenced by L(q) remaining nonzero for negative 
q, whereas, for PS(T), only values of q between 0 and 1 
need be considered. Since, particularly for large T, 

the details of the time dependence of both PL(T) and 
Ps( T) are at once intricate and largely uninteresting, 
the function L(q) will contain the relevant information 
for a meaningful comparison of the two solutions. The 
matter of Poincare recurrences has already' been 
brought up in II, and it is by means of L(q) that a 
quantitative discussion of these can be made. Clearly, 
expressions like Eq. (36) and Eq. (43), involving as 
they do linearly independent sets of frequencies, will 
never exactly regain their initial value of 1, for which 

Here J o is the Bessel function of order zero. The sum 
of cosines in Eq. (44) is of course an infinite one, and 
so strictly the theorem is not applicable to it. But since 
as On --+ 00 the coefficients an of the cosines decrease 
like 0-;.2, it is possible to truncate the sum after some 
properly chosen finite number of terms, N say. The 
maximum error which is committed by this procedure 
can be made as small as one likes by increasing N, 
and in the numerical estimation of Eq. (43) exactly the 
same approximation is made. 

In Fig. 5 we have plotted L(q) vs q for 0'2 = 10 for 
the time-dependent parts PT of PL(T) (solid line) and 
PS(T) (dotted line). (The constant parts Pc are given in 
the caption.) In order to obtain an accurate estimate of 
the dependence of L(q) on q, both PS(T) and PL(T) 
were computed at intervals of 0.1 of T for values in the 
range 0:::;; T:::;; 400. It was found that peT) became 
completely "dephased" for values of T > 100, and 
since it is the long-time behavior of the function peT) 
that we wish to study, values of L(q) were determined 
by a direct counting procedure for the range 100 :::;; 
T :::;; 400. Although, in principle, values of L(q) vs q 
computed using the counting procedure should be 
determined from a study of peT) vs T for all T, such a 

all the phases would need to be integral multiples of 
217, but they may approach this value to within any 
arbitrarily small number. Lastly, although in the case 
of PS(T), L(q) can be determined only by plotting the 
function PS(T) and counting the number of times its 
graph intersects a given ordinate over a fixed range of 
T, in the study of P L(T) there exists another inde­
pendent (and less tedious) procedure for computing 
L(q). Use may be made of a theorem of Kac5 which 
deals with the average frequency with which a sum of 
cosines of the form 

N 

J(t) = I an cos (wnt) (44) 
n~l 

achieves a value q. The coefficients an are required to be 
real, and the frequencies Wn are required to be 
linearly independent. [It is for the latter reason that 
the Kac theorem is not applicable to Eq. (36).] The 
use of the theorem was suggested by the work of 
Mazur and Montro1l5 who discussed Poincare 
recurrences in assemblies of coupled harmonic 
oscillators; these authors also provided a simplified 
proof of the theorem. The result is that the mean 
frequency with which the expression (44) has the 
value q is given by 

(45) 

program is obviously impossible. In this and in the 
following cases where the counting procedure is used, 
a range of T is chosen so that the smaller, more 
sensitive values of q occur about 300 times: Such a 
range in the present case 0'2 = lOis 100 :::;; T :::;; 400. 

As mentioned in Sec. IV, although the choice of 
phase was immaterial for 0'2 = 10 in that exactly the 
same curve was generated for cp = 0 and cp = 17/2, 
for the case 0'2 = 1 this is not so, as may be seen from 
Figs. 3 and 4. It is of some interest then to examine 
whether this difference in phases is significant in terms 
of the long-time behavior of PS(T). A study of L(q) is 
well suited to an examination of this point, and in 
Fig. 6 we have plotted it for 0'2 = 1 and for the two 
phases cp = 0 and cp = 17/2. To construct these plots 
PS(T) was calculated at intervals of 0.02 of T for the 
range 0:::;; T:::;; 150. Since, as can be seen from an 
examination of Figs. 3 and 4, peT) dephases almost at 
once, the entire range ofT was considered in counting 
up the number of times a given q occurred. The results 
given in Fig. 6 reveal some difference in the long-time 
behavior of PS(T) for cp = 0 and cp = 17/2. A more 
interesting feature here, however, is the appearance 
in both these plots of two rather well-defined maxima 
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FIG. 5. A plot of L(q) vs q for cr' = 10. The solid line was constructed from an analysis of the time-dependent part pr of pL(T) using the 

counting procedure discussed in the text. For completeness, we note that for pL(T), pc = 0.1362, and pT(O) = 0.8504. The dotted line was 
constructed from a similar study of the time-dependent part PT of pS(T). Here, pc = 0.0465 and pAO) = 0.9335. 

disposed on either side of the origin q = O. These are 
not of equal amplitude, the one for positive q being 
larger. This behavior is so different from that observed 
in an examination of the long-time behavior of either 
PS(T) or PL(T) for (J'2 = 10 that a detailed study of 
L(q) corresponding to PL(T) for (J'2 = 1 was thought 
necessary. A study of this case is particularly instruc­
tive since, in addition to the direct-counting method 
employed in determining the results presented above, 
it is practical for this case to make use of the Kac 
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FIG. 6. A plot of L(q) versus q for cr' = I, constructed from an 
analysis of the time-dependent part P1' of piT), using the counting 
procedure. The dotted line refers to a phase rp = 0; for this choice of 
phase Pc = 0.2784 and PT(O) = 0.7116. The solid line refers to a 
phase rp = 1T/2; for this phase, Pc = 0.2930 and Pr(O) = 0.6886. 

formula, Eq. (45). In Fig. 7 we plotted L(q) for PL(T) 
for (J'2 = 1. The full curve corresponds to the de­
pendence of L(q) on q determined by the straight­
forward method of counting. The circles correspond 
to values of L(q) computed using the Kac formula. 
It is necessary at this point to discuss briefly the 
details of the numerical calculation. First of all, in 
constructing Fig. 7, only the first 20 terms in Eq. (43) 
were computed, as opposed to the 190 that were used 

2.0 

1.5 

::: 1.0 
.....J 

0.5 

r 

O.O~-~O~.4~~---~O~.~2---L--~O~.O~~--+~O~.~2--~~+~OL.4~ 
q 

FIG. 7. A plot of L(q) vs q for cr' = I. Here, the solid line describes 
the dependence of L(q) on q as determined from an analysis of the 
time-dependent part PT of P L(T) using the counting procedure. The 
circles refer to the values of L(q) computed lIsing the Kac formula. 
We note that for 20 pole locations, Pc = 0.3881 and PT(O) = 0.5715. 
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in constructing Fig. 7 of II. The reason for this 
limitation has to do witli the amount of computer 
time required to calculate values of L(q) accurately 
using Eq. (45). It is to be emphasized here, however, 
that the use of a smaller number of terms in this case 
is not a serious limitation, since the values of PL(T) 
generated were not significantly different from those 
computed using 190 terms: The most serious dis­
crepancy appears to be at T = 0, where for 190 terms 
we found 

P L(O) = 0.6076, 

whereas in the present case for 20 terms we have 

P1'(O) = 0.5715, 

an error of less than 6 %. The values of L(q) predicted 
by the Kac formula were accordingly computed and 
compared with those obtained by direct counting for 
exactly 20 terms. But since it takes somewhat over one 
hour of computer time per point to determine a value 
of L(q) that does not change by more than 1 % when 
the area of integration is increased fivefold, it is thus 
out of the question to compute, using Eq. (45), values 
of L(q) for P L( T) with a2 = 10. There one requires far 
more than 20 terms to approximate the behavior of 
P/~(T) calculated using the full complement of 600 
terms as was done in constructing Fig. 8 of II. Lastly, 
we note that although the limits of integration on the 
Kac formula are (- 00, + (0), a careful error analysis 
of the values calculated from Eq. (45) revealed that 
these limits, for our purposes, could be replaced by 
( - 80, + 80) without committing an error of more than 
1 %, and this was done for a grid spacing of 0.1. As 
regards the counting procedure, we have, as in our 
study of Ls(q) for a2 = 1, determined values of LL(q) 
from the time evolution of P L( T) in the range 0 ~ T ~ 
150. Here again, one must expect some error since, 
as mentioned above, only 300 occurrences of the 
sensitive values of q were used to determine each value 
of LL(q). Given the possible errors that can arise in 
calculations based both on Eq. (45) and on the 
counting procedure, it is worth noting that the 
maximum discrepancy between the values of L(q) 
determined using the two procedures is 11 %. Further­
more, despite the slight disagreement in the two 
results, both calculations show L1Jq) to have two 
maxima disposed on either side of the origin q = O. 
These maxima, unlike those of Ls(q), are of equal 
amplitude and are symmetrically disposed about q = 

O. Finally, examination of Figs. 6 and 7 reveals that, 
for a2 = 1 as for a2 = 10, Ls(q) < LL(q) for all q. 

VI. DISCUSSION AND CONCLUSIONS 

In this paper, a detailed comparison has been made 
between two essentially different "weak-coupling 
approximations" to the spontaneous emission of the 
Wigner-Weisskopf atom, both in an infinite system 
and in a finite one. The difficulties which had arisen in 
II in the treatment based on the Liouville equation, 
principally the occurrence of negative values of p( T), 
can indeed be removed by proceeding instead from the 
SchrOdinger equation, but the nature of the weak­
coupling limit of the new solution is also far from 
clear. Both results, PL(T) and PS(T), have one import­
ant feature in common however: The limit rJ. -+ 0 
gives rise to a nonanalyticity-that is, except under 
certain circumstances, the limit is not well defined. 
The exceptional cases are of course that where the 
thermodynamic limit is taken, thereby suppressing 
any dependence on a nonanalyticity parameter, and 
that of the asymptotic solution for large but not 
infinite systems, Eq. (42). Otherwise, although 
numerical results are readily obtainable, different 
solutions to the same problem appear, depending on 
the approach chosen for the calculation. Especially 
as a2 becomes small, near unity, the infl uence of 
nonanalyticity parameters, the cp of this paper or the 
E of II [see Eq. (43)], becomes significant, and so the 
meaningfulness of the approximation scheme is very 
dubious in this regime. This matter has been discussed 
in II, where other reasons are given to doubt the 
possibility of a weak-coupling approach for small a2• 

Perhaps, then, this point should be passed over for 
present purposes. But it is by no means the whole 
problem. 

The solutions PLH and PS(T) obtained here and in 
II, despite the numerical similarities remarked earlier, 
are essentially different in almost all of their aspects. 
Which of them provides a better approximation to the 
exact dynamics prescribed by the Hamiltonian, Eq. 
(1), cannot be seen at once. The statistical-mechan­
ical result, PL(T), certainly has more structure than 
Ps( T), and may thus seem to provide more detailed 
information about the system's evolution. But it has 
features which cannot accord with the exact solution. 
The negative values not only defy the probabilistic 
interpretation of the density matrix, but they indicate 
that this object, P say, does not evolve under a unitary 
time-development operator. Further, an initial con­
figuration p(O) which corresponds to a pure quantum 
state (and not an ensemble of different states averaged) 
does not remain so; and the Gibbs entropy 

Tr [pet) log pet)] 

is not a constant of the motion. These properties are 
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of course incompatible with the exact Liouville-von 
Neumann equation, and by necessity with any 
description, however otherwise inadequate, based on a 
state function rather than a density matrix. 

It seems to us that the only clear way to resolve the 
difficulties brought up here is to compare both ps{-r) 
and PL(T) with the exact solution of the quantum­
mechanical problem. This solution has been obtained 
in this paper in Eq. (32), but its properties have not 
yet been examined either analytically or numerically. 
It will be the task of the next paper in this series to 
perform such an investigation, and one also of the 
simpler infinite-system solution, Eq. (21). In this way, 
we hope not only to cast light on the question raised 
here regarding weak-coupling approximations and 
their relative merits, but also to gain a better under­
standing of the thermodynamic limit in the context of 
an irreversible model where an exact solution, however 
complicated, is known, and thereby of the formal 
processes of the statistical-mechanical theory based 
on the generalized master equation [Eq. (1-24)]. In 
principle, the way is open also to an examination of 
our model in the light of ergodic theory. 
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APPENDIX 

We have to prove the result given by Eq. (28) in 
Sec. IV. This is done in a way similar to that outlined 
in Whittaker and Watson6 for a formula due to Plana. 
We shall consider the function 

Li'(J' + a)(e-2uiJ' - 1)]-1 (AI) 

of a complex variable J' for Re a < 0, 1m a < 0. This 
function is to be integrated around the indented 
rectangular contour shown in the upper half of 
Fig. 8, with corners at J' = 0, N (an integer), N + ioo, 
and ioo. The cut from J' = ° to - 00 needed to make 
the function (AI) regular is outside the contour and 
of no importance in the calculation which follows. 
The only singularity of Eq. (AI) lying inside the 
contour then is the simple pole at J' = -a where there 
is a residue of 

[( _a)p(e2 .. ia _ 1)]-1. 

At the integral sites) = 1,2, ... , N on the real axis, 
the function (AI) has simple poles-at) = n the 
residue is 

-0 ® 

I 2 3 N-2 N-I N 

Z-PLANE 

I 2 3 N-2 N-I N 

- - - ~ ~ 

; 

FIG. 8. The two contours of integration used in establishing the 
result Eq. (A4). 

Thus the contribution to the contour integral from the 
indentations at these points is 

! II 1 + 1 + VCr), 
2 n=1 nP(n + a) 4NP(N + a) 

where r is the radius of the indentations. The contri­
butions from that part of the contour lying on the 
real axis is 

:r (N dJ' 1. + VCr), 
Jo fP() + a)(e-2u ,J' - 1) 

where :r indicates that the principal value of the 
integral is to be taken at the singularities of the 
integrand. From the sides of the rectangle parallel to 
the imaginary axis comes the term 

+ ~ {'" dy(e2" 11 - 1)-I{[(iy)P(a + iy)]-1 
I Jr 

- [(N + iy)P(N + a + iy)]-I}. 

The quarter-circle at) = ° gives rise to the following 
contribution: 

- iJ.° dOrl-Pei(1-p)o(27TiareiOrl + VCr) 
.. /2 

= ir-
P 

(e-ip .. /2 _ 1) + VCr). 
27Tap 
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Clearly the top of the rectangle, when it is removed to 
infinity, does not contribute to the integral. The 
application of Cauchy's theorem now yields the 
result 

N-l 
t L [n!P(n + a)]-1 + [4N!P(N + a)rl 

n=l 

+ :r iNLi'(Z + a)(e-2uiJ' - 1)]-1 dJ 

+ ~ I. a) dy[e2UlI - l]-I[(iy)!P(a + iy)]-1 
I r 

- [(N + iy)P(N + a + iy)rl 

+ ir-!P (e-i!p1f/2 _ 1) 
27Tap 

= 27Ti + O( ) (A2) 
(_ay(e2uia _ 1) r . 

A similar consideration of the function 

[Z!P(Z + a)(e2uiJ' - 1)]-1 

around the contour described in the lower half of 
Fig. 8 gives the further result 

N-l 
! L [n!P(n + a)]-l + [4N!P(N + a)rl 

n=l 

+ :r iN[z!p(Z + a)(e21fi
J' - 1)]-1 dJ 

- ~ I. a) dy(e21f1l - 1)-1{[( - iy)!P(a - iy)rl 
I r 

- [(N - iy)!P(N + a - iy)r1} 

+ ir-!P (ei!p1f12 _ 1) = OCr). (A3) 
27Tap 

When Eqs. (A2) and (A3) are summed, there results 

N-l 
L [n!P(n + a)]-1 + [2N!P(N + a)r1 

n=l 

x (a sin P2
Tr + Y cos P2

7T
) + OCr), (A4) 

where leN, r) represents that part of the integral term 
which comes from the second term in square brackets 
of the integrands in Eqs. (A2) and (A3). 

Our result is obtained by letting N -... 00, r -... 0 in 
Eq. (A4). To do this, the following observations are 

made. First, we have 

I· (_r-!p. p7T I."'d 2a sin (p7T/2) ) 1m -- sm - + Y ___ --':.0...-..:......: __ 

r .... O Trap 2 r y!P(e2ull - 1)(a2 + i) 

= lim f. a) d y ( 2a sin (p7T/2) _ sin (P7T/2») 
r .... O r y!P(ebll - 1)(a2 + i) 7TayHl 

_ ra) dy sin (p7T/2) 
Jo 7TayH\e21fY - 1)(a2 + i) 

X [27Ta 2y - (e21fY - 1)(a2 + i)]' 

which is a well-defined integral, since the integrand 
behaves like y-P as y -... O. Secondly, we have 

leN, r) = ~ f.a) dy(e21f1l - 1)-1 
I r 

X {[(N + iy)!P(N + a + iy)]-1 

- [(N - iy)!P(N + a - iy)r1}, 

and because the expression in square brackets be­
haves for small y like 

-2iy - 2ipy[N/(N + a)]-1 +O(y) 

(N + a)2N!P 

then the integrand of leN, r) is finite as y -... 0 and so 
the integral tends to zero as N -... 00. When all these 
results are grouped together, Eq. (A4) yields 

a) 
L [n!P(n + a)]-l 

n=1 

1a) dJ 27Ti 
= +-----

o JP(J + a) (_ay(e21fia - 1) 

+ 2ia) dy[y!p-l(e21f1l - 1)(a2 + i)r1 

[ 
p7T 1. p7T 

X cos- +-sm-
2 7Ta 2 

X e7Ta2 - y_l(e
21f
; - 1)(a

2 + i») J. 
which, along with the relation 

1a) dJ ()-!P i!p1f 
= 7T - a e csc p7T 

o J!p(J + a) 

for Re a < 0, 1m a < 0, with 0 < arg (-a) < 7Tj2, 
gives the desired result, Eq. (28). 
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A method is ?escribed for constructing, from any source-free solution of Einstein's equations which 
possess.es a KIlh.ng vector, a one-parameter family of new solutions. The group properties of this trans­
formatIOn are discussed. A new formalism is given for treating space-times having a Killing vector. 

INTRODUCTION 

One of the obstacles to a better understanding of the 
physical implications of general relativity is the 
relative scarcity of exact solutions of Einstein's 
equations. Although approximate methods are avail­
able, we have as yet no prescription, given a physical 
situation, for writing down a class of exact solutions 
which might represent that situation. (In electro­
dynamics, for example, Green's functions provide 
such a prescription.) Although it is unlikely that a 
similar prescription will be available for the gravita­
tional field in the near future, a substantial increase in 
the number of known solutions would be a useful 
first step. 

We shall here introduce a technique for generating 
explicit, exact, source-free solutions of Einstein's 
equations. More precisely, there is associated with 
any exact solution which has a Killing vector a one­
parameter family of solutions, each with a Killing 
vector. The family forms a circle. Repeating the 
transformation merely results in a further rotation 
within the original circle of solutions; no additional 
solutions are obtained in this way. Even applied to 
Minkowski space, the transformation described here 
generates nonflat exact solutions of Einstein's equa­
tions. Our method generalizes work of Buchdahl,l 
Ehlers,2 and Harrison.3 

The transformations have an interesting group 
structure. Given a solution with a Killing vector, the 
group of transformations on that solution emerges 
initially as the three-dimensional Lie group SL(2, R). 
There is a (two-dimensional) subgroup N of SL(2, R) 
which corresponds to "pure gauge transformations," 
i.e., whose elements change the parameters describing 
the solution without substantially altering the solution 
itself. The collection of new solutions is given by the 
quotient set, SL(2, R)/N. Although it is possible to 
introduce a "gauge-free" transformation, the situation 
is then complicated by the fact that N is not a normal 
subgroup of SL(2, R) and, hence, that SL(2, R)/Nhas 
no natural group structure. 

With each solution there is associated three curl­
free bivectors. One is identically a curl, one is the 
vector discovered by Komar, and the third is new. 
Under a transformation of the solution, the three 
forms (or, alternatively, the numbers obtained by 
integrating them over a compact 2-surface) behave as 
the components of a symmetric, second-rank tensor 
under SL(2, R). This behavior is closely related to the 
"wire singularities" present, e.g., in the original 
formulation of NUT space.4 

Unfortunately, many of the solutions resulting from 
the method have no obvious physical interpretation. 

The Appendix consists of a new, coordinate­
independent treatment of the Einstein equations in the 
presence of a Killing vector. This formulation con­
siderably simplifies many of our calculations. 

1. THE TRANSFORMATION 

The transformation with which we shall be con­
cerned can be described as follows. Consider a 
source-free solution of Einstein's equations, i.e., a 
four-dimensional manifold M with metric gab for 
which the Ricci tensor Rab vanishes. Suppose, in 
addition, that there is a Killing field ~a. We define the 
norm and twist of ~a, respectively, by 

(1) 

(2) 

Taking the curl of (2) and using Rab = 0, we see that, 
at least locally, Wa is the gradient of a scalar field w. 
Einstein's and Killing's equations imply, furthermore, 
that the right-hand sides of 

and 
'V[a{Jbl = 2A'Va~b + WEabcd'Vc~d (3) 

are curl-free; hence, there exist, locally, solutions lXa 

and {Ja of (3). Normalize lXa and {Ja by' 

(4) 

918 
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Then, for each real number e, the metric 

g~b = [(cos e - w sin e)2 + A2 sin2 e]gab 

+ 2 sin e~(a[2(Xb) cos e - Pb) sin e] 

+ A[(COS e - w sin e)2 + A2 sin2 er l 

X sin2 e[2(Xa cos e - Pa sin e] 

X [2(Xb cos e - Pb sin e] (5) 

is an exact, source-free solution of Einstein's equations. 
Each metric (5) admits ~a as a Killing vector. 6 The 
solutions corresponding to O's differing by a multiple 
of Tr are, of course, identical. Otherwise, the solutions 
are in general distinct. 

We shall first describe how this transformation 
arises, and show that the Ricci tensor of (5) does 
indeed vanish. 

Since the metric gab admits a Killing vector, one 
would expect to be able to "divide out" by the action 
of the symmetry to obtain a three-dimensional 
formulation of the solution. A technique for doing 
this is discussed in the Appendix. The solution is 
characterized by a three-dimensional manifold S with 
a nonsingular metric hab and the two scalar fields A 
and w, subject to [cf. (AI8)] 

!Rab = iA-2[(Daw)(DbW) - hab(Dmw)(Dmw)] 

+ iA- l DaDbA - !A-2(DaA)(DbA), (6) 

D2A = i).-l(Dm)')(D",).) - ).-l(Dmw)(Dmw), 

D2w = t).-I(Dm).)(Dmw), 

where Da is the (covariant) derivative and :Jtab the 
Ricci tensor7 with respect to hab . [Strictly speaking, 
(6) is applicable only when ). ¥ 0. If ). < 0, hab is 
positive definite, while if ). > 0, hab has signature 
(-, +, + ).] Equations (6) can be simplified con­
siderably by the substitution hab = )'hab , T = W + i).: 

hab' A, and w-the transformation (8) takes the form 

h~b = ).(A'rlhab , 

J,' = ).[(cw + dl + C2).2]-\ (9) 
w' = [Caw + b)(cw + d) + ad2

] 

X [(cw + d)2 + c2).2rl. 

In fact, the only substitution of this type-h~b = 
j()., w)hab' ).' = ).'()., w), OJ' = W'(A, w)-which pre­
serves (6) is (9).8 Thus, the general transformation is 
defined by a real 2 x 2 matrix (~ ~) with unit deter­
minant, i.e., by an element of SL(2, R). Successive 
application of two such transformations [cf. (8)] 
yields the transformation associated with the product 
of the matrices. 

Finally, we wish to recover the expression (5). Set 

(
a
c 

bd) = ( cos e sin 0) (10) 
-sin e cos e 

so that (9) becomes 

h:1b = ).(A,)-lhab , 

).' = ).[(cos e - OJ sin e)2 + ).2 sin2 ert. 

OJ' = [(w cos e + sin e)( -OJ sin e + cos e) (11) 

- sin e cos e).2] 

X [(cos e - w sin e)2 + A2 sin2 e]-I. 

According to the Appendix, the transition from three­
dimensional quantities (11) to four-dimensional 
quantities is accomplished as follows. Solve 

Vra'l]b] = HA')-2Eabca~ch'dmv mW', 
and 

~a'l]a = 1 

for 'l]a' and set 

(12) 

(13) iab = -2(T - f)-2C15 (aT)(15b)f), 

152T = 2(T - f)-I(15 mT)(15 nT)hmn , (7) Substituting (11) into (12), we see that the solution is 

where 15a and iab are the derivative and Ricci tensor 
with respect to hab (152 = hab 15a15b). We are given a 
solution, hab' T, of (7): We wish to write down a new 
solution, h~b' T'. The form of Eqs. (7) suggests that 
we consider !i~b = !iab , T' = T'( T). Substituting into 
(7), we find that the only solution of this form is 

T' = (aT + b)!(CT + d), (8) 

where a, b, c, and d are real numbers which can, 
without loss of generality, be normalized by ac -
bd = 1. Expressed in terms of our original quantities-

t}a = (A')-I~a + 2(Xa cos e sin e - sin2 ePa' (14) 

where (Xa and Pa are given by Eqs. (3) and (4). Equation 
(5) now follows from (13). 

It is easily checked that the metric g~b defined by (5) 
again has ~a as a Killing vector. The norm and twist 
of ~a, with respect to g~b' are given by (11). 

Thus, the fundamental group of transformations (8) 
is the three-dimensional Lie group SL(2, R). Un­
fortunately, two of the three dimensions correspond 
to pure gauge. Consider the subgroup N of SL(2, R) 
consisting of matrices of the form (~ ~) (so d = a-l). 
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For such a matrix, (9) becomes 

h~b = d2ha-b , 

A' = d-2A, 

w' = d-\aw + b). 
(15) 

We see that (15) represents merely a constant con­
formal transformation, a rescaling of the Killing 
vector, and the addition of a constant to w. Such 
transformations do not in any essential way alter the 
original solution of Einstein's equations. The sub­
group N thus represents gauge transformations. The 
group SL(2, R) is two-to-one isomorphic to 0(2, I): 
the three-dimensional Lorentz group. In terms of 
0(2, I), Nis a subgroup of null rotations [a subgroup 
of 0(2, I) which leaves invariant a fixed null direction]. 
The collection of effective transformations is SL(2, R)/ 
N, a circle. However, since N is not a normal sub­
group of SL(2, R), there is no natural group structure 
on SL(2, R)/N. The fact that the collection of "effec­
tive transformations" does not form a group stems from 
the following circumstance. The original transforma­
tion, as described at the beginning of this section, did 
not, strictly speaking, act on a solution of Einstein's 
equations. Before applying the transformation it was 
necessary to make a decision: which twist scalar w to 
use. [w is determined by (2) only up to an additive 
constant.] For a given e, the resulting metric (5) 
depends on the choice of this constant. However, the 
collection of metrics obtained, as e varies from ° to 7T, 

is the same no matter which w was chosen originally. 
In other words, the only effect of adding a constant to 
w is to alter the way in which the metrics (5) are 
parameterized bye. (The situation is similar, but 
simpler, with regard to multiplying the original 
metric, or the original Killing vector, by a constant 
factor.) 

Our restriction of the general element of SL(2, R) to 
the form (10) may now be described as follows. Since 
SL(2, R)/N has no natural group structure, we 
(somewhat artificially) impose such a structure on it. 
This is done by choosing a subgroup of SL(2, R) 
which intersects each coset of N exactly once. The 
elements of the form (10) constitute such a subgroup. 
[For some purposes the subgroup consisting of 
elements of the form (! n, which intersects each 
coset except one, is more convenient.] 

To summarize, the most general transformation is 
expressed in four-dimensional form, without re­
dundancy, by (5). It is often more convenient, 
however, to consider instead the three-dimensional 
quantities-hab , A, and w-and retain the full group 
SL(2, R). 

Finally, we discuss the transformation properties 

of certain exact forms associated with the solutions. 
It is easily verified from (7) that the three real vector 
fields 

v~ = (T - T)-2ham(DmT + DmT), 

V~ = (T - T)-2ham(TDmT + TDmT), (16) 

Va ( -)-2h-am( -2D- + 2D- -) 3 = T - T T mT T mT, 

on S are divergence-free (using Da). [Remarkably 
enough, (T - T)-2ham(TS DmT + TSDmT) is divergence­
free only for s = 0, I, or 2.] Under (8), the three fields 
(16) are taken into linear combinations of themselves: 

v~ - d2V~ + 2cdV~ + C2V~, 
V~ - bdV~ + (ad + bc)V~ + acV~, (17) 

V~- b2V~ + 2abV~ + a2V~. 
But (17) is the transformation law for the components 
of a symmetric, second-rank tensor under SL(2, R) 
[or, alternatively, of a vector under 0(2, I)]. To 
express (16) in terms of four-dimensional quantities, 
we contract each vector with Eabc to obtain three skew, 
second-rank, covariant, curl-free, tensor fields on S. 
The mapping 1p:M - S (see Appendix) then induces 
corresponding curl-free bivectors on M. These are 

V'[a(A-l~bl)' 

V'[a(WA-l~bl) - tEabCd V'c~d, (18) 

V'[iA- 1(W 2 + A2)~bl) - 2AV'a~b - WEabcdV'c~d, 

[compare (3)]. Now suppose that in our original 
space-time M there is a compact two-dimensional 
submanifold K which is not the boundary of any 
compact three-dimensional submanifold of M (i.e., 
K represents a nonzero element of the second homol­
ogy group of M). We would expect to have such a 
surface, for example, in the exterior field of a star 
(e.g., the Schwarzschild or Kerr solutions): K would 
be a 2-sphere surrounding the star at one instant of 
time. Integrating the forms (18), we obtain three 
numbers9 associated with K: 

II = r V'[a(A-l~bl) dSab, 
JK 

12 = J)'V[aCWA-1gb1) - !Eabcd'Vce] dSab, 

13 = r [V'[a(A-1(w2 + A2)gbl) JK 
- 2AV'a~b - WEabcdV'c~d] dSab. 

(19) 

These numbers, of course, obey the same transforma­
tion law (17) as the corresponding forms. In par­
ticular, there is an "invariant" associated with a 
symmetric, second-rank tensor over SL(2, R): 

(20) 
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Note that the first integral (19) vanishes identically 
(the integrand is a curl). How can this observation be 
consistent with the fact that the integrals (19) trans­
form as the components of a tensor over 5L(2, R)? 
After (9), the quantity II will, in general, no longer be 
zero. The answer, of course, is that the nonvanishing 
of either of the last two integrals (19) implies that !Xa 

or f3a of (3) cannot be regular everywhere ?? A!' 
Singuiarities in !Xa or f3a will result in singulantJes In 

the transformed metric g~b of (5). Thus, the trans­
formation (5) will generate singularities on certain 
2-surfaces in M, these surfaces having the property 
that they intersect every compact 2-surface K on which 
the integrals (19) fail to vanish. . 

Consider, as an example, the Schwarz schild 
solution, where ~a is the timelike Killing vector. In this 
case, 12 is essentially the Schwarzschild mass, while 
Ia = O. Thus, the transformed metric (5) will have a 
singularity on a 2-surface. In fact, g~b turns out to 
be the Taub-NUT metric, and the singularity the 
"wire singularities" found in the original formulation 
of that metric.4 •2 It is clear from this formulation that 
the singularity is not of the "curvature type." It is 
perhaps not surprising that it can be eliminated. lO 

2. CONCLUSION 

Although the technique described here produces 
large new classes of solutions of Einstein's equations, 
the method offers very little insight into the physical 
implications of the metrics. Presumably, such insight 
must come from a detailed study of examples. It turns 
out, however, that, even if one begins with a moder­
ately simple metric gab' the resulting g~b can be quite 
complicated. For example, starting from the general 
Killing vector in the Schwarzschild solution (linear 
combination of time-translation and rotation), the 
resulting metrics, although they can easily be written 
out explicitly, are too involved to admit any simple 
interpretation. 

More encouraging is the situation in the case of two 
Killing vectors. If a space-time has two commuting 
Killing vectors (e.g., a Weyl solution), then the 
transformation can be applied with respect to any 
linear combination of the Killing fields. The resulting 
g~b certainly has one Killing field: But does it neces­
sarily have two? The answer is yes. Furthermore, the 
two Killing vectors in the new metric also commute, 
and so the transformations can be iterated. If one 
applies two transformations, first with respect to one 
Killing vector and then with respect to another, the 
result depends on the order in which the transforma­
tions are applied. Thus, by iterating transformations, 
one expects to obtain families of solutions which 

involve many parameters-perhaps even arbitrary 
functions-starting, for example, from just one Weyl 
metric. Can one, by means of such iterations, obtain 
simple metrics? cause the wire singularities to cancel 
each other out? These questions will be dealt with in a 
subsequent paper. 

APPENDIX: A THREE-DIMENSIONAL FORMAL­
ISM FOR SPACE-TIMES WITH ONE KILLING 

VECTOR 

In this Appendix we shall introduce a formalism, 
based in part on one developed by Ehlers,2 for dealing 
with a space-time on which there is given a preferred 
Killing vector. 

Let M, gab be a space-time with Killing vector field 
~a, and suppose further that ~a is either everywhere 
timelike or everywhere spacelike. (Otherwise, it is 
necessary to consider the regions ~a ~a < 0 and 
~a~a > 0 separately. H) Let 5 denote the collection of 
all trajectories of ~a. That is, an element of 5 is an 
(inextendible) curve in M which is everywhere tangent 
to ~a. We define a mapping "P from M onto 5 as 
follows: For each point p of M, "P(p) is the trajectory 
of ~a passing through p. Our final assumption (which 
always holds locally) is that 5 may be given the 
structure of a differentiable 3-manifold such that "P 
is a smooth mapping. This assumption serves to 
eliminate certain global situations in which a trajectory 
of ~a "passes arbitrarily near to itself" in M. 

If the Killing field ~a were hypersurface orthogonal, 
then it would be possible to represent 5 as one of the 
hypersurfaces in M which is everywhere orthogonal 
to ~a. Each trajectory of ~a would intersect this 
hypersurface in exactly one point. In the nonhyper­
surface orthogonal case, however, there is no natural 
way of introducing such surfaces in M. That is to say, 
it is most natural in the general case to regard 5 as a 
quotient space of M (i.e., "P:M --+ 5) rather than a 
subspace (5 --+ M). As we shall see, there is a one-to­
one correspondence between tensor fields and tensor 
operations on 5 and certain tensor fields and tensor 
operations on M. The differential geometry of 5 will, 
in this sense, be mirrored in M. 

We first consider the representation of tensor fields 
on 5 as certain tensor fields on M. In fact, we shall 
show that there is a one-lo-one correspondence between 

,b d d fi ld r b •.. d tensor fields ra.::~ on 5 an tensor e S a ... c on 
M which satisfy 12 

/:ar b"' d - 0 /: r b"' d - 0 
~ a"'C - , '-'d a"'C - , 

"r b"' d 0 Lg w"C = . (AI) 

Let ft' be a (smooth) scalar field on 5, so ft' assigns a 
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real number to each ~-trajectory in M. Set fl = fl' 0 '!jJ: 

That is, f-l is the scalar field on M which assigns to the 
point p E M the value assigned by fl' to the trajectory 
through p. This fl is evidently constant along each 
trajectory of ~a, i.e., we have L~fl = O. Conversely, 
any smooth scalar field f-l on M, subject to L~fl = 0, is 
constant along each ~-trajectory, and so defines a 
unique scalar field fl' on S. We next consider covariant 
vector fields. Any covariant vector field A~ on S 
may be written in the form 

A~ = rx'DafJ' + ., . + fl'Dav', (A2) 

where Da is the gradient operator on Sand rx', fJ', ... , 
v' are scalar fields on S. We define the corresponding 
covariant vector field on M by 

where V' a is the gradient and rx, fJ, ... ,v are the 
corresponding scalar fields on M. Evidently, Aa 
satisfies (AI) and is uniquely determined by A~. 

(This fact, of course, is well known: A covariant 
tensor field can be "pulled back" through a differen­
tiable mapping.) Conversely, any covariant vector 
field on M, subject to (AI), can be written in the form 
(A3) with scalars which are constant along the ~­

trajectories and, hence, via (A2), defines a covariant 
vector field on S. Interpret contravariant vector fields 
as derivations on the scalars.13 Then there is clearly 
a one-to-one correspondence between contravariant 
vector fields on S and derivations on the scalar fields 
on M which are constant along the ~-trajectories. 

But such derivations are, in turn, in one-to-one 
correspondence with vector fields on M satisfying 
(AI). Our result now follows from the fact that ten­
sors of higher valence can be constructed from sums 
of outer products of (contravariant and covariant) 
vectors. 

Note furthermore that the operations of addition, 
outer product, and contraction commute with the 
passage from M to S. That is to say, if one of these 
operations is first carried out in M and the result 
taken over to S, the result is the same as that obtained 
if the fields are first taken to S and the corresponding 
operation carried out there. Thus, the entire tensor 
algebra on S is completely and uniquely mirrored by 
tensors on M subject to (AI). While it is useful 
conceptually to have the three-dimensional manifold 
S, it plays no further logical role in the formalism. We 
shall hereafter drop the primes: We shall continue to 
speak of tensor fields being on S merely as a shorthand 
way of saying that the field (formally, on M) satisfies 
(AI). 

In particular, the following are tensor fields on S: 

hab = gab - (~m~m)-l~a~b' (A4) 

hab = gab _ (~m~m)-l~ae, (AS) 

h! = b~ - (~m~m)-l~ae, (A6) 

€abc = (±~m~m)-t€abcd~d. (A7) 

Equations (A4) and (A5) define the metric and inverse 
metric on S. Note that the indices of any tensor on S 
can be raised or lowered with either h or g with the 
same result. Equation (A6) defines the Kronecker 
delta on S. Alternatively, (A6) can be interpreted as 
the projection operator onto S. That is to say, if a 
tensor satisfies the last equation (AI), then its pro­
jection, by h~, satisfies (AI). Finally, (A7) is the 
alternating tensor on S. (The sign within the paren­
thesis is to be so chosen that €abc will be real.) Note that 
€abc€abc = 6. 

We next introduce the (covariant) derivative on S. 
If T:.·.·.~d is any tensor field on S, define 

DeT~:::~ = h~h::" . h~h:' .. h~V'pT';;'::~n' (AS) 

Clearly, (AS) is again a tensor field on S. Furthermore, 
D a satisfies the following conditions: 

l. The derivative of the outer product of two tensor 
fields on S is equal to the first times the derivative of 
the second plus the second times the derivative of the 
first (Leibnitz rule). 

2. The contraction of the derivative of any tensor 
field on S equals the derivative of its contraction. 

3. If fl is any scalar field on S, then Daf-l is the gra­
dient of fl, and D[aDbJfl = ° (torsion-free). 

4. The derivative of the sum of two tensors on S 
is the sum of their derivatives. 

5. The derivative of the metric is zero. 

But these are the axioms for the unique covariant 
derivative operator on a manifold with metric.13 

We conclude that Da is that operator. 
To illustrate these remarks (and to obtain an 

expression we shall need later), we evaluate the 
Riemann tensor of S, the analog of the first Gauss­
Codazzi equation. Let kc be an arbitrary vector field 
on S. Then 

DaDbkc = h~hih~V'vCh~h~V'skt) 

= h~h~h~V'pV'skt 
- (~m~m)-lh~h~h~(V'p~qWV'skr 

- (~m~ m)-lh~hih~(V p~r)~tv qk t • (A9) 

Now antisymmetrize over a and b. We eliminate the 
derivatives of kc on the right, using, for the second 
term, the fact that Lgkr = ° and, for the third term, 
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the fact that ;tkt = O. Thus, 

D[aDb]kc = h~hgh~V[p Vq]kr 

+ (~m~m)-lh~h~h~(Vp~q)(Vr~s)kS 
+ (~m~ m)-lh[ah~]h~(V p;r)(V q;tW. (AIO) 

But ke is arbitrary. Therefore, the Riemann tensor 
:Rabed of S is related to the Riemann tensor Rabed of M 
by 

:Rabed = h[ah~]h[ch~J[Rpqrs + 2(;m~m)-](Vp~q)(Vr~s) 
+ 2(~m;m)-y\7p~r)(Vis)]. (All) 

The basic equations for a space-time with a 
Killing vector are a set of differential equations on 
three quantities, the metric hab' the norm (1), and 
twist (2) of the Killing vector. Note that A and_wa are 
fields on S. It follows immediately from (1), (2), and 
Killing's equation that the derivative of the Killing 
vector may be expressed directly in terms of J. and Wa: 

(AI2) 

We shall also require the formula for the second 
derivative of the Killing vector: 

(Al3) 

[To prove (Al3), begin with VaVb;e and interchange 
first the first two indices, then the last two, then the 
first two, etc., until the indices have been restored to 
their original positions. Interchanging the first two 
indices gives a term involving the Riemann tensor; 
interchanging the last two contributes a minus sign, 
by Killing's equation.] Taking the curl and divergence 
of (2), using (AI2) and (Al3), we obtain, respectively, 

D[aWb] = -€abmn~mR;~p, 

Dawa = i A-1WmDm A. 

(A14) 

(A15) 

Applying D2 = DaDa to (I), using (AI2) and (Al3), 
we obtain 

D2J. = lJ.-I(DmJ.)(DmA) - J.-1wmwm - 2Rmn~m~n. 

(A16) 

Finally, contracting (All) once, and again using (AI2) 
and (Al3), 

.'Rab = ~A-2[ WaWb - habwmwm ] + iJ..-1 D"DbA 

- iA-\DaA)(DbA) + h:h~Rmn' (AI?) 

The basic equations for a space-time with a Killing 
vector are (AI4), (AI5), (A16), and (AI?). 

In the source-free case (Rab = 0), (A14) implies 
that Wa is a gradient, Wa = D"w. The equations 

(A14)-(A17) then take the form 

:Rab = V,-2[(Daw)(DbW) - hab(Dmw)(Dmw)] 

+ lJ.-IDaDbJ. - tJ.-2(DaJ.)(DbA), 

D2J. = lJ.~l(DmJ.)(DmJ.) - J.-l(Dmw)(Dmw), 

D2w = iA-1(DmA)(Dmw). 

(AIS) 

Finally, we show how it is possible to recover the 
original 4-dimensional space-time from its 3-dimen­
sional formulation. Suppose we are given a 3-manifold 
S with a metric hab' a scalar field A, and a vector field 
Wa [subject, of course, to the following condition: 
Either A < 0 and hab is positive-definite, or else A > 0 
and hab has signature ( -, +, + )]. Suppose in addition 
that these fields satisfy (AI5). We shall show that there 
is an essentially unique four-dimensional space-time 
M, gab with a Killing vector ;a and a mapping 
"P: M -+ S which reproduces the given fields on S. It 
will then follow, in particular, that the full content of 
Einstein's equations in the presence of a Killing vector 
is expressed by (AI8), for all the components of the 
Ricci tensor are involved in (A14)-(A17). The 
construction proceeds as follows. Choose an arbitrary 
four-dimensional manifold M along with a nowhere­
vanishing vector field ~a on M. Let "P be a smooth 
mapping from M to S which induces a diffeomorphism 
between S and the manifold of ;-trajectories in M: 
In particular, "P maps each trajectory of ;a into a 
single point of S. The idea is to use "P and the various 
fields on S to obtain the metric gab of M. By (AI5), the 
skew field 

(A19) 

on S is curl-free. The "pull-back" of F~b is therefore 
a curl-free skew field Fab on M. Let 1]a be a vector field 
on M satisfying 

Vra 1]bJ = Fab , 

~a1]a = I. (A 20) 

[Note, from (AI2), that 1]a will eventually be A-l~a.J 
Finally, let Hab denote the symmetric tensor field on M 
obtained, via "P, from hab . (So, in particular, ;aHab = 
0.) Then the required metric on Mis 

(A21) 

It is easily verified, from (AI2) and (A20), that .;a is a 
Killing vector of gab and that the norm and twist of 
;a, with respect to gab' are just A and OJ, respectively. 
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5 Since we are permitted by (3) to add a gradient to at. and fJ., 
these fields can always be chosen to satisfy (4). Note, however, that 
even (3) and (4) together do not determine the fields uniquely: 
There remains the freedom to add the gradient of any scalar field 
which is constant along the trajectories of $a. While the addition of 
such a gradient does formally change the resulting metric (5), the 
change is of a trivial sort: It can be effected by a diffeomorphism 
onM. 

6 That C;at. = C§fJa = 0 is a consequence of (3), (4), and the 
following identity. If $a is any vector field and Fa' ...• ' any skew 
tensor field, then 

sVr.,(.;mF.2···a, 1m) - (s + l).;mVr.,F.2 ...•• rn1 

+ (-I)'CsF., ...•• = o. 

JOURNAL OF MATHEMATICAL PHYSICS 

7 Our conventions for the Riemann and Ricci tensors are 

Dr.Db]k, = l.R.bcdkd
, .Rob = .R m.mb· 

• We are ignoring a trivial transformation: h~b = (const)h.b, 
A'= A,W'=W. 

• Since K is compact, the curls do not, of course, contribute to the 
integrals. The second integral (19) is well known. The third appears 
to be new. 

'0 C. W. Misner, J. Math. Phys. 4, 924 (1963). 
11 Note, however, that the transformation as originally given by 

(5) does not require any assumptions whatever on $m~ "'. 
12 Note that we use Latin indices for both tensors on M and 

tensors on S. The reason for this will emerge shortly. 
,3 See, for example, S. Kobayashi and K. Nomizu, Foundations of 

Differential Geometry (lnterscience, New York, 1963). 
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A formali~m is derived for expandi~g the solution~ of the SchrOdinger equation in terms of spherical 
Bessel.functlOns. The regular .and. the I~regular solutions. ar~ treated. A relation between the expansion 
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Jrregul~r and regular Coulomb wavef~nctions are given in a form of a simple recurrence relation. The 
expansIOns have be~n c~ecked numencalI.y and found to be very suitable for calculating the regular 
Coulomb wavefunctlOn IU a very large regIOn of the coordinate and the Coulomb parameter. 

1. INTRODUCTION 

The spherical Bessel functions are the most com­
mon functions used in scattering calculations. In the 
absence of a potential, they are the solutions of the 
Schrodinger equation. They can be easily and accu­
rately calculated with the aid of the backward 
recurrence relations. l For these reasons it seemed 
appealing to look at the general problem of expanding 
the solutions of the SchrOdinger equation in terms 
of spherical Bessel functions. 

The expansions in terms of Bessel functions have 
properties similar to power series expansions, and the 
theorems concerning expansions of analytic functions 
in a Laurent-type expansion are almost the same with 
the exception that powers are replaced by Bessel 
functions. For a detailed discussion, the reader is 
referred to Watson's book.2 In the case of spherical 
Bessel functions, this analogy can be made by re­
placing the nth power by a spherical Bessel function 
of order n. Accordingly, if a solution of the Schro­
dinger equation can be expanded in a power series, it 
can also be expanded in spherical Bessel functions. 

In this paper a formalism is given for the expansion 
of the solution of the Schrodinger equation in terms 
of spherical Bessel functions (Secs. 2, 4, and 5). It 
appears that the relation between the expansion 

coefficients and the phase shifts is very simple (see 
Sec. 3). In this paper both the regular and the irregular 
solutions are treated. As a practical application of this 
method, the expansion coefficients of the Coulomb 
wavefunctions are derived in the form of a recurrence 
relation. The expansion of the regular Coulomb 
wavefunctions was known before,3 but its derivation 
was not published. We derive here the expansions of 
the irregular as well as the regular Coulomb wave­
functions (Sec. 6). 

The difficulties of computing the Coulomb wave­
functions are well known.4 We found by numerical 
checking that the expansion of the regular Coulomb 
wavefunction in terms of spherical Bessel functions is 
very satisfactory in a wide region of the coordinate 
and the Coulomb parameter (see Sec. 7), for which no 
other single method4 can be used effectively. 

2. THE EXPANSION IN SPHERICAL BESSEL 
FUNCTIONS 

Let us write the Schrodinger equation for the /­
partial wave for a particle with mass f.l and energy E: 

[ 
d2 2 d 2 1(1 + 1)J 211-
dr2 + ~ dr + k - r2 1fir) = Fi 2 V(r)7fir), 

(2.1) 
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tensors on S. The reason for this will emerge shortly. 
,3 See, for example, S. Kobayashi and K. Nomizu, Foundations of 

Differential Geometry (lnterscience, New York, 1963). 
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A formali~m is derived for expandi~g the solution~ of the SchrOdinger equation in terms of spherical 
Bessel.functlOns. The regular .and. the I~regular solutions. ar~ treated. A relation between the expansion 
~oefficlents and the phase shIfts IS denved. As an appiJcatlOn, the expansion coefficients of both the 
Jrregul~r and regular Coulomb wavef~nctions are given in a form of a simple recurrence relation. The 
expansIOns have be~n c~ecked numencalI.y and found to be very suitable for calculating the regular 
Coulomb wavefunctlOn IU a very large regIOn of the coordinate and the Coulomb parameter. 

1. INTRODUCTION 

The spherical Bessel functions are the most com­
mon functions used in scattering calculations. In the 
absence of a potential, they are the solutions of the 
Schrodinger equation. They can be easily and accu­
rately calculated with the aid of the backward 
recurrence relations. l For these reasons it seemed 
appealing to look at the general problem of expanding 
the solutions of the SchrOdinger equation in terms 
of spherical Bessel functions. 

The expansions in terms of Bessel functions have 
properties similar to power series expansions, and the 
theorems concerning expansions of analytic functions 
in a Laurent-type expansion are almost the same with 
the exception that powers are replaced by Bessel 
functions. For a detailed discussion, the reader is 
referred to Watson's book.2 In the case of spherical 
Bessel functions, this analogy can be made by re­
placing the nth power by a spherical Bessel function 
of order n. Accordingly, if a solution of the Schro­
dinger equation can be expanded in a power series, it 
can also be expanded in spherical Bessel functions. 

In this paper a formalism is given for the expansion 
of the solution of the Schrodinger equation in terms 
of spherical Bessel functions (Secs. 2, 4, and 5). It 
appears that the relation between the expansion 

coefficients and the phase shifts is very simple (see 
Sec. 3). In this paper both the regular and the irregular 
solutions are treated. As a practical application of this 
method, the expansion coefficients of the Coulomb 
wavefunctions are derived in the form of a recurrence 
relation. The expansion of the regular Coulomb 
wavefunctions was known before,3 but its derivation 
was not published. We derive here the expansions of 
the irregular as well as the regular Coulomb wave­
functions (Sec. 6). 

The difficulties of computing the Coulomb wave­
functions are well known.4 We found by numerical 
checking that the expansion of the regular Coulomb 
wavefunction in terms of spherical Bessel functions is 
very satisfactory in a wide region of the coordinate 
and the Coulomb parameter (see Sec. 7), for which no 
other single method4 can be used effectively. 

2. THE EXPANSION IN SPHERICAL BESSEL 
FUNCTIONS 

Let us write the Schrodinger equation for the /­
partial wave for a particle with mass f.l and energy E: 

[ 
d2 2 d 2 1(1 + 1)J 211-
dr2 + ~ dr + k - r2 1fir) = Fi 2 V(r)7fir), 

(2.1) 
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where k2 = 2pEn-2 and n is Planck's constant divided 
by 2rr. We assume that VCr) can have at most singu­
larity of order l/r near the origin. The solutions ofEq. 
(2.1) will be specified according to 

A = / for the regular solution, 

= -/ - 1 for the irregular solution. (2.2) 

Let us now write the solution 1p;.(r) as a series of 
spherical Bessel functions: 

<X) 

1p;.(r) = I f~(k)jH1n(kr), (2.3) 
m=O 

where the jm are the spherical Bessel functions of 
order m. For negative orders, the jm coincide with the 
spherical Neumann functions nm according to 

nm(kr) = (-I)m+1j_m_l(kr). (2.4) 

When VCr) = 0, the solution to Eq. (2.1) is the 
spherical Bessel function of order A, 

[ 
d2 2 d 2 1(1 + 1)J 
-2 + -- + k - 2 j;.(kr) = 0, (2.5) 
dr r dr r 

where A is given by Eq. (2.2). This equation will be 
used in the following calculations. Let us make the 
expansion 

<X) 

2pli-2r2V(r)jm(kr) = I b'::(k)jm+Hn(kr). (2.6) 
n=O 

In Sec. 4 are given formulas for calculating the 
coefficients b'::(k) in terms of the power series coeffi­
cients of the potential VCr). In order to calculate the 
coefficients f;"(k) of the expansion (2.3), we insert 
this expansion in Eq. (2.1). Using Eqs. (2.5) and (2.6) 
and comparing the coefficients of the same spherical 
Bessel functions, we get 

m-l 
f~[(A + m)(A + m + 1) - 1(1 + 1)] = I f~b~~nn_l 

n=O m-l 
- ~ fl bl +m- 1- n m - 1 2 ... (2 7) - ~ m-l-n n , -" . . 

n=O 

Equation (2.7) enables us to calculate successively the 
coefficients f~(k) of the regular solution (A = I). 
They are given in terms of the b;:' and the arbitrary 
coefficient fMk). In Sec. 5 we will treat the irregular 
solution. 

3. THE PHASE SHIFTS 

The spherical Bessel functions have the following 
asymptotic behavior: 

Nkr),-....,sin(kr-frrl)f(kr) for kr»/. (3.1) 

On the other hand, the asymptotic behavior of the 
wavefunction 1p!(r) is given (up to a multiplicative 

factor) by 

'/f'!(r),-...., [sin (kr - !rrl) + tan b! cos (kr - trrl)]/(kr), 

(3.2) 

where b! is the phase shift. Comparing Eqs. (2.3), (3.1), 
and (3.2), we find a simple formula for the phase 
shifts: 

tan b! = -(Ji - f~ + f~ - .. . )/(J~ - f~ + f~ - ... ). 

(3.3) 

This expression is derived under the assumption of 
finite range forces. 

4. CALCULATION OF THE COEFFICIENTS b';;(k) 

In order to determine the coefficients b'::(k) of Eq. 
(2.6), we shall use the Cauchy identity for an analytic 
function f(z): 

1 f fez) f(zo) = -. -- dz, 
2m c z - Zo 

(4.1) 

where C is a circle of radius R with center at the 
origin, and Zo is any point inside it. Let us now expand 

krj ;.(kr) <X) l . 
--::..~~ = I A,.{kx») HHn(kr), (4.2) 
kx - kr n=O 

where the A~ are functions which will be determined 
later on, A is an integer, and the jl are the spherical 
Bessel functions. From Eqs. (4.1) and (4.2) we have 

2pli-2r2V(r)j ;.(kr) 

= [~ J:. 2pn-
2

zV(z) dZJrh(kr) 
2m Jc z - r 

= ~ 2 ! [i ZV(Z)A~(kZ)JjHHn(kr), (4.3) mn n=O J 
where the path of integration encloses the point 
z = r (r ¥= ° for A negative). Comparing Eq. (2.6) 
with Eq. (4.3),we get 

n-
2 f b~(k) = ~ zV(z)A~(kz) dz. 

rrl 
(4.4) 

Let us now determine the functions A~(kz). Let us 
write Eq. (4.2) in a more concise form: 

<X) 

zjiz)/(t - z) = IA~(t)j;'-t-Hn(Z). (4.5) 

Multiplying both sides by (t - z)/z and substituting 

h(z)Jz = [h-l(Z) + jl-t-l(z)]J(2A + 1), 
we get 

. ~ tA~(t). <X) l . 

] iz) = n"::o 2,1 + 2n + 3 ];.+n(z) - n~lAn-l(t)];.+n(z) 

(4.6) 
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Equating the coefficients of the spherical Bessel 
functions, we get 

A~(t) = (2A + 3)t-\ A~(t) = (2A + 3)(2A + 5)t-2, 

(4.7a) 
and the following recurrence relation: 

A~(t) = (2;' + 2n + 3)A~_I(t)/t 
- [(2;' + 3 + 2n)/(2A - 1 + 2n)]A~_2(t), 

n > 1. (4.7b) 

From Eqs. (4.7) we can calculate all functions A~(t), 
for example, 

A~(t) = (2A + 3)(2;' + 5)(2;' + 7)t-3 
- (2;' + 7)t-\ 

A~(t) = (2;' + 3)(2;' + 5)(2;' + 7)(2A + 9)t-4 

- 2(2;' + 5)(2;' + 9)t-2
• 

We see 'that A~(t) are polynomials in t-1 of order 
n + 1 and satisfy 

A~( -t) = (-l)n+1A~(t). (4.8) 

Let us write 
n+l 

A~(t) = ! a;·llt-i, (4.9) 
i=1 

and expand the potential VCr) in a power series: 

2mli-2V(r) = v_1r-1 + Vo + vIr + v2r
2 + .. '. (4.10) 

Substituting Eqs. (4.9) and (4.10) in Eq. (4.4), we get 

n+1 
bACk) "" A.n k- i 

n = £.., ai Vi - 2 , (4.11) 
i=1 

which is the desired formula for the b~(k). 

5. THE IRREGULAR SOLUTIONS 

We can write the irregular solution lz(r) == tp_!-1(r) 
of Eq. (2.1) in the form 

lz(r) = Atpz(r) In (2r) + Rz(r), (5.1) 

where tpl(r) is the regular solution, A is an arbitrary 
constant, and Rz(r) has a pole of order 1+ 1 at r = O. 
One important feature of the irregular solution (5.1) 
is that we can add to it a regular solution and have 
another irregular solution. 

Substituting Eq. (5.1) in Eq. (2.1), we get an 
inhomogeneous equation for R z: 

[~ + ~ ~ + k2 _ l(l + l)]R z(r) 
dr2 r dr r2 

= 2/-t1i-2V(r)R z(r) - A[r-2tpl(r) + 2r-1 tp;(r)]. (5.2) 

Now we expand 
00 

Rz(r) = ! gz.,,(k)j-l-1+m(kr). (5.3) 
m=O 

In order to determine the coefficients g!n , it is necessary 
to calculate the coefficients d;" of the fOllowing 
expansion: 

00 

A[tpz(r) + 2rtp;(r)] = ! dz."jl+m(kr). (5.4) 

Using the expansion (2.3) and the relation 

znz) = IUz) - Zjl+1(Z), 
we get 

00 

tpzCr) + 2rtp;(r) = ! (21 + 2m + l)f!njl+m(kr) 
m=O 

00 

- 2kr! f!njl+m+1(kr). (5.5) 
m=O 

The second sum on the rhs of Eq. (5.5) should be 
treated separately: 

OC! 

O'(r) = 2kr! fz."jz+m+1(kr). (5.6) 

Using the method of Sec. 4, we find 

krjl+m+1(kr) 
OC! 

= ! (-It(21 + 2m + 4n + 5)jl+m+2n+2(kr). (5.7) 
n=O 

Substituting Eq. (5.7) in (5.6), we get 

00 00 

O'(r) = 2! fz.,,!(-lt 
m=O n=O 

x (21 + 2m + 4n + 5)jl+m+2n+2(kr) 

= 2 s~ [10 %/~,( _l)n 

X (21 + 2m + 4n + 5)bm+2n.s}l+S+2(kr) 
00 

= 2! (21 + 2s + 5)F;jl+S+2(kr), (5.8) 
s=O 

where 
[8/2] 

F~ = ! (-1)~f;-2n' 

From Eqs. (5.4), (5.5), (5.8), and (5.9) we get 

dz." = (21 + 2m + l)A(Jz." - 2Fz.,,_2) 

(5.9) 

= (21 + 2m + 1)A(2F!n - fz.,,). (5.10) 

Substituting Eqs. (5.3), (5.4), and (2.6) in Eq. (5.2), 
we get (d;" = 0 for m negative) 

gz.,,[(-I- 1 + m)(-l + m) - /(l + 1)] 
m-1 

- _dz + "" b-I-1+m-1-n z - m-21-1 £.., n gm-l-n' (5.11) 
n=O 

From Eq. (5.11) we see that the coefficient g~l+1 is 
undetermined. This results from the fact that any 
regular solution can be added to the irregular one and 
the resulting combination is another irregular solution. 
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The g~l+l is the coefficient which multiplies the 
contribution of the regular solution. For m = 21 + 1, 
Eq. (5.11) reduces to 

21 

The value of f~ is still undetermined. It can be 
determined from the known power series expansion 
(5.4) of Fz{'Yj, kr) near r = 0, and is equal to 

'gl bl- 1- n _ dl 
£., 21-n n - 0 • 

f~ = (21 + I)!! Cl(n), (6.6c) 
(5.12) where4 

r1~O 

Equation (5.12) together with Eq. (5.11) for 0 ~ m ~ 
21 constitutes a system of linear equations from which 
the coefficients g~, gi , ... ,g~l are uniquely deter­
mined. 

6. THE COULOMB WA VEFUNCTIONS 

In order to find the expansion of the Coulomb wave­
functions in spherical Bessel functions, we have to find 
the expansion coefficients br;:(k) of Eq. (2.6) in terms 
of the expansion coefficients of Eqs. (4.9) and (4.10). 
From Eqs. (4.7), (4.8), and (4.9) we have 

ai· n = 0 for odd n, 
= (-I)"/2(2A + 2n + 3) for even n. (6.1) 

For the Coulomb potential VCr), Eq. (4.10) has the 
form 

(6.2) 

where n is the Coulomb parameter. The regular and 
irregular Coulomb wavefunctions are usually denoted 
by Fl(n, kr) and Gl(n, kr), respectively. Those 
functions divided by r are the solutions of the Schro­
dinger equation (2.1) with the potential given by (6.2). 
Substituting the results· of Eqs. (6.1) in Eq. (4.11) we 
get 

b~(k) = 0 for odd n, 

= (-I)"/22n(2A + 2n + 3) for even n. (6.3) 

From Eqs. (6.3) and (2.7), we get the following 
recurrence relation for the expansion coefficients f~: 

sl(m)f~/(21 + m + 1) 

= 217(f~-1 - f".,.-a - f~-5 - ... ), (6.4) 

where we denote 

s;.(m) = (A + m)(A + m + 1) - '(l + 1), (6.5) 

and the lower indices off on the rhs of Eq. (6.4) are 
not negative. Adding Eq. (6.4) to the same equation 
but with m - 2 instead of m, we get 

Sl(m) I I sl(m - 2) I 

2-'-+----O-2-m-+-l f m - 2nf m-l + 21 + 2m _ 3 f m-2 = 0, 

m 2 2, (6.6a) 

C1(n) = (21 + 1)(21)! 

X (1(1 + n2)(22 + n2) ... (12 + n2)27Tn)i. 

exp (27Tn) - 1 

(6.7) 

Thus, the regular Coulomb wavefunction is given by 
00 

Fl(n, kr) = r L f~jl+n(kr), (6.8) 
n=O 

where f~ are given in Eq. (6.6). In order to derive the 
expansion of the irregular Coulomb wavefunction, we 
proceed along the method described in Sec. 5. The 
coefficients are given in Eqs. (5.9), (5.10), and (5.11). 
From Eqs. (5.9) and (6.4) we have 

F~ = sl(m + 1)f~+1/[2n(21 + 2m + 3)], (6.9) 

where szCm) is defined by Eq. (6.5) and f~ are the 
coefficients of the expansion of the regular Coulomb 
wave function given in Eq. (6.6). 

On the basis ofEqs. (5.1), (5.3), (5.10), (5.11), (6.3), 
(6.5), and (6.9), the irregular Coulomb wavefunction 
Gl(n, kr) satisfies 

r-1Gl(n, kr) = Ar-1Pl(n, kr) In (2r) 
00 

+ L g~j-l-1+n(kr), (6.10) 
n~O 

where the coefficients g~ are related through 

g~S_l_l(m) = 2n(2m - 21 - 1) 

X (g~-l - g~-a + g~-5 - ... ) - d~-21-1' 
(6.11) 

where 

d~-21-1 = (2m - 21 - 1)A[2P~_21-1 - fm-21-tl. 
(6.12) 

Similar to the derivation of Eq. (6.6a), we can get 
from Eq. (6.11) the following recurrence relation for 
the coefficients g~,: 

g;"S_l_l(m) + d;"-21-1 _ 2 I 

2m - 2' - 1 ngm-l 

g;"-2S-1-1(m - 2) + d;"-21-a + = O. (6.13) 
2m - 21 - 5 

and In Eqs. (6.12) and (6.13), the coefficients A and g~l+l 
(6. 6b) are still undetermined; those are the two arbitrary 
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constants of an irregular solution. We can determine 
them from the known properties of the Coulomb wave­
functions. The formulas for the power series expan­
sions were given by Yost et al., 5 and are collected in 
a compact form in Refs. 1 and 4. The irregular 
Coulomb wavefunction is given by 

GIJ'Y}, p) = [2'Y}/CgC'Y})]FIJ'Y}, p) 

X [In 2p + qIJ'Y})phC'Y})] + (hJrJ, p), 

(6.14) 

where FL('Y}, p) is the regular Coulomb wavefunction 
and Co('Y}) is given by Eq. (6.7). The ratios qL('Y})/ 
PL('Y}) are too elaborate to be given here. They are 
given in Refs. 1, 3, and 5, and some of them are 
tabulated in Ref. 4. () L( 'Y}, p) is a power series in p, 
and near p = 0, 

(6.15) 

Comparing Eq. (6.14) with Eq. (6.1O),we find 

A = 2'Y}/C~('Y}). (6.16) 

As we mentioned before, the coefficient g~!+1 multiplies 
a regular solution; therefore, from Eqs. (6.14) and 
(6.16), 

(6.17) 

From Eq. (6.15) we can also determine the value of 
the coefficient g~. Near p = 0 

(6.18) 

On the basis of Eqs. (6.10), (6.14), (6.15), and (6.18) 
we have 

g~ = (-lW21 + 1)!!/[(21 + I)CL('Y})]' (6.19) 

Now, with the aid of Eq. (6.10) and the recurrence 
relation of Eq. (6.13) and Eqs. (6.12), (6.16), (6.17), 
and (6.19), the irregular Coulomb wavefunction can 
be determined. 

7. COMPUTATION OF THE COULOMB 
WA VEFUNCTION 

We checked numerically the expansion of Fo('Y}, p) 
for 1 ~ p ~ 20 and 1 ~ 'Y} ~ 20. In Fig. 1 are 
depicted the number of terms of the expansion in 
spherical Bessel functions, for which five-digit accuracy 
is achieved. The spherical Bessel functions were com­
puted with the aid of a backward recurrence relation.! 
One can see that the number of terms depends 
mainly on p and less on 1). It was previously assumed3 

that the spherical Bessel functions expansion is good 
for large p and smaller 'Y}. From our analysis it appears 

-o 
~ ., 
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FIG. I. The number of terms of the expansion of Fo(1}, p) in 

spherical Bessel functions, for which five-digit accuracy is achieved 
for two values of 1}. 0 depicts 1} = I; x, 1} = 20. 

that for smaller p the convergence is faster and 'Y} can 
exceed p. 

The irregular Coulomb wavefunction Go('Y}, p) can 
be calculated according to Eq. (6.10). The sum of the 
rhs of Eq. (6.10) can be calculated with almost the 
same accuracy as the regular Coulomb wavefunction, 
but for increasing values of P'Y} the two terms on the 
rhs of Eq. (6.10) almost cancel each other, and here 
the accuracy depends on the number of digits with 
which the calculations are performed. For example, in 
performing the calculations with seven digits of accu­
racy, one will get inaccurate or wrong answers for 
approximately p'Y} > 5. 

8. SUMMARY AND DISCUSSION 

In the preceding sections all necessary formulas for 
finding the expansion coefficients of the expansion of 
the Schrodinger equation in terms of spherical Bessel 
functions are derived. In Sec. 4, we dealt with the 
expansion of a given function multiplied by a spherical 
Bessel function in terms of spherical Bessel functions. 
This we achieve by introducing the polynomials A~(t) 
given by Eq. (4.2) and by finding the recursion rela­
tion (4.7) which determines the values of these 
polynomials. Next, the expansion coefficients are 
obtained using Eqs. (4.9)-(4.11). 

Having these results, the solutions of the Schro­
dinger equation can be found using the recurrence 
relations (2.7) for the regular solution and (5.11) 
for the irregular solution. The expansion coefficients 
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of the regular solution are simply related to the phase 
shifts through Eq. (3.3). 

This method is applied to find the expansion 
coefficients of the regular and irregular Coulomb 
wavefunctions in Sec. 6. In Sec. 7 we find that this 
expansion is also suitable for computing the regular 
Coulomb wavefunction. This example also indicates 
that the expansion in terms of spherical Bessel 
functions can be a useful representation of wave­
functions. 
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Starting from the usual variational principle, the gravitational field equations for the vacuum static 
case of spherical symmetry are obtained in Brans-Dicke [phys. Rev. 124,925 (1961)] scalar-tensor 
theory following a technique due to Weyl [H. Weyl, Space-Time-Matter (Dover, New York, 1922)]. The 
field equations being highly nonlinear, an approximate solution to the second order is presented. It is 
observed that the results of gravitational redshift, deflection of light, and the rotation of the perihelion of 
Mercury are in agreement with the earlier results obtained by Brans, Dicke, and Heckmann. But the 
method, being simpler, can be used in solving other problems in the theory. 

1. INTRODUCTION 

Several attempts have been made in recent years to 
incorporate Mach's principle into the general theory 
of relativity. One of them is the theory by Brans and 
Dicke. l A scalar-tensor theory of gravitation has been 
developed in their paper.1 A scalar cfo is introduced by 
them into the usual variational principle of general 
relativity, viz., 

b f [R + (167TG)L]( -g)! d4x = 0, (1) 

and a generalization of (1) is obtained in the form 

oJ[cfoR + (167T)L - wcfoA· ilcfo](-g)id4x = 0, (2) 

where R is the scalar curvature, L the Lagrangian 
density of matter, OJ the dimensionless constant, and 
the velocity of light being considered as unity. Here cfo 
plays the role of G-l, G being the constant of gravita­
tion. From (2) they have obtained field equations 

expressing the line element in the isotropic form.2 
Heckmann3 also considered the spherically symmetric 
case of the above and presented an exact solution. In 
the above two cases the equations are very compli­
cated and so a simpler solution is well worth discus­
sion. 

In this paper we have started from the same varia­
tional principle (2) and obtained field equations for 
the vacuum static case following a technique used 
first by Weyl4 and then by Pauli.5 The field equations 
being highly nonlinear, an approximate solution of the 
vacuum static case of spherical symmetry is obtained. 
It is found that the results obtained using the above 
solution for the three tests of general relativity are in 
agreement with the results of Brans-Dicke and others. 
It is realized that even though the solution is an 
approximate one, it is simpler and may be used in 
solving other problems in this theory. Also, in the 
existing earlier exact solutions, an approximation is 
what is required for practical calculations. 
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of the regular solution are simply related to the phase 
shifts through Eq. (3.3). 

This method is applied to find the expansion 
coefficients of the regular and irregular Coulomb 
wavefunctions in Sec. 6. In Sec. 7 we find that this 
expansion is also suitable for computing the regular 
Coulomb wavefunction. This example also indicates 
that the expansion in terms of spherical Bessel 
functions can be a useful representation of wave­
functions. 
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Starting from the usual variational principle, the gravitational field equations for the vacuum static 
case of spherical symmetry are obtained in Brans-Dicke [phys. Rev. 124,925 (1961)] scalar-tensor 
theory following a technique due to Weyl [H. Weyl, Space-Time-Matter (Dover, New York, 1922)]. The 
field equations being highly nonlinear, an approximate solution to the second order is presented. It is 
observed that the results of gravitational redshift, deflection of light, and the rotation of the perihelion of 
Mercury are in agreement with the earlier results obtained by Brans, Dicke, and Heckmann. But the 
method, being simpler, can be used in solving other problems in the theory. 

1. INTRODUCTION 

Several attempts have been made in recent years to 
incorporate Mach's principle into the general theory 
of relativity. One of them is the theory by Brans and 
Dicke. l A scalar-tensor theory of gravitation has been 
developed in their paper.1 A scalar cfo is introduced by 
them into the usual variational principle of general 
relativity, viz., 

b f [R + (167TG)L]( -g)! d4x = 0, (1) 

and a generalization of (1) is obtained in the form 

oJ[cfoR + (167T)L - wcfoA· ilcfo](-g)id4x = 0, (2) 

where R is the scalar curvature, L the Lagrangian 
density of matter, OJ the dimensionless constant, and 
the velocity of light being considered as unity. Here cfo 
plays the role of G-l, G being the constant of gravita­
tion. From (2) they have obtained field equations 

expressing the line element in the isotropic form.2 
Heckmann3 also considered the spherically symmetric 
case of the above and presented an exact solution. In 
the above two cases the equations are very compli­
cated and so a simpler solution is well worth discus­
sion. 

In this paper we have started from the same varia­
tional principle (2) and obtained field equations for 
the vacuum static case following a technique used 
first by Weyl4 and then by Pauli.5 The field equations 
being highly nonlinear, an approximate solution of the 
vacuum static case of spherical symmetry is obtained. 
It is found that the results obtained using the above 
solution for the three tests of general relativity are in 
agreement with the results of Brans-Dicke and others. 
It is realized that even though the solution is an 
approximate one, it is simpler and may be used in 
solving other problems in this theory. Also, in the 
existing earlier exact solutions, an approximation is 
what is required for practical calculations. 
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2. FIELD EQUATIONS 

Following Pauli ,5 we consider the line element for 
the static spherically symmetric case in the form 

(dS)2 = (dXI)2 + (dx2)2 + (dX3)2 

+ l(xl dx1 + x2 dx2 + x3 dx3) 

+ g44(dx4)2. (3) 

The scalar curvature R can be calculated from Ref. 4, 

Rilc = [R22]b~ + ([R Il ] - [R22])xixk/r2, i, k = 1, 2, 3, 

as 
[R Il ] = fj,r-2g"4it(d/dr)(r2g~4fj,-I) - 2fj,'r-1fj,-l, 

[R 22 ] = -r-2fj,-\d/dr)(rg44 fj,-1) - r-2, (4) 

R44 = - g44r-2fj,-lHd/dr)(r2g~4fj,-1), 

where 
h2 = 1 + Ir2, fj, = h( -g44)t = (-g)t. (5) 

(Here dashes denote differentiation W.r.t. r.) and 
[Rii ] is the value of Rii at the point Xl = r, x 2 = x 3 = 
O. Now R is given by 

R = gikRik = gllRn + g22R22 + g33R33 + g44R44 ' 

which is equal to (Xl = r, x 2 = x3 = 0) 

_r-2fj,-I(d/dr)(r2g~4fj,-I) + 2fj,'r-1fj,-3 g44 
- 2r-2fj,-I(d/dr)(rg44/).-1) - 2r-2. (6) 

Now returning to the variational principle, we can 
write (2) as 

f{ [ 1 d (r2g~4) 2 fj,' 
<5 4> - r2fj, dr ~ +; fj,3 g44 

- ~ ~ (rg44) _ ~J + wg44 4>'2}r2fj, dr = 0, 
r2fj, dr fj, r2 fj,2 4> 

(7) 
where 

4>.;4>'; = gll4>,24>-1 = h-24>,24>-1 = - g444>,2fj,-24>-1 

and the space is empty L = O. Also 

(_g)t = fj, 

and 
d4x = d4x4 . dO. . r2 dr 

(where dO. is the elementary solid angle at the 
origin).4 Now variation with respect to 4>, fj" and g44 
in (7), respectively, leads to the following field equa­
tions: 

-(d/dr)(r-2g~4fj,-I) + 2rg44 fj,' fj,-2 

- 2(d/dr)(rg44 fj,-1) - 2fj, 

= wr2g41.fj,-I4>,24>-2 + 2w(d/dr)(r2g44 fj,-14>'4>-1), (8) 

-2rg~4fj,-2 - 2gu fj,-2 - 2 = wr2g44f2fj,-24>-2, (9) 

2rfj,'fj,-2 = _wr2f2fj,-14>-2. (10) 

3. SOLUTIONS OF FIELD EQUATIONS 

It can be easily verified that, by putting 4> = const, 
the above equations reduce to the well-known case of 
the Schwarzschild solution as obtained by Weyl4 and 
Pauli.5 

We try the solution 

(d/dr)(r2g444>'~ -14>-1) = O. (11) 

And so from (8) 

(d/dr)(r2g~4fj,-I) + 2rg44 fj,'fj,-2 - 2(d/dr)(rg44fj,-1) - 2fj, 

= wr2g44 4>,2fj, -14>2. (8') 
Also, we have 

2 ' '\-2 2 '\-2 2 2 ,\-2,1,12-/.-2 - rg44u - g44u - = wr g44u 'f' 'f' 

and 

2 '\''\-2 2 ,\-1-/.,2-/.-2 
ru u g44 = - wr g44u 'f' 'f' . 

(9') 

(10') 

Equations (8'), (9'), and (10') constitute only two inde­
pendent equations which can be taken as 

(d/dr)(rg44 fj,-I) = -fj" 

(d/dr)(r2g~4fj,-1) = 4rg44fj,' /).-2. (12) 

From these equations we may obtain the following 
equation (after some reduction): 

(13) 
where 

y = rg44 fj,-t, y' = dy/dr, y" = d2y/dr2, 

and A is a constant. 

In view of the difficulty of finding an exact solution 
of (13), we fell back on (12) for an approximate 
solution correct up to the second order in l/r, by using 
the method of successive approximation. 

Let us consider the field equations (8), (9), and (10). 
When 4> = const , we get 

fj,=I, g44=-1+G/r, G=const. 

Now substituting these values in rhs's of Eqs. (12) 
and integrating with respect to r, we get 

g44/fj, = -1 + 2A/r, A = const, 

C = const. 

(14) 

(15) 

Eliminating fj, between (14) and (IS) and integrating 
with respect to r, we get 

g44 = -(1 - 2A/rrC/2
)'. (16) 

Again from (14) and (16) we get 

fj, = (I - 2A/r)-W/2HO. 

Using these values of g44 and II in (5), we get 

/1 2 = gll = (l - 2A/r)-W/2H2l. 
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Again from (11) 4> can be determined as 

4> = p(1 - 2J..jrtJ]/2)·, B = const, 

p = const. 

Thus the solution to the second approximation can be 
written as 

g44 = -(I - 2)./r)-0/2)., 

gll = (1 - lA/rrw/U +2), (17) 

if; = pel - 2)./r)-n12A, 

where )., C, B, and 4> are constants which are to be 
determined. 

Now in (17) expanding gu to the second order and 
if; and gll to the first order in llr, we get 

g44 ~ -1 + (-C/r) + (-C/2)(-C - 2}.)(I/r2), 

gll ~ 1 + (C + 2)')(1Ir), 

4> ~ p(1 + B/r). 

Now equating the coefficients of 11r to Brans­
Dicke 1 weak-field approximations, we get (since to 
the first order these values should be the same) 

-C = 2M4>ol[1 + 1/(3 + 2w)], 

C + 2), = 2M4>ol[1 - 1/(3 + 2w)], 

so that 2J. = 4Mif;o\ }. = 2Mif;ill, 

P = if;o, and B = 2Mif;o\3 + 2W)-1. 

Here M stands for the finite mass of the visible uni­
verse and 4>0 is a constant and is to be computed to 
first order in mass densities.l 

Hence (17) now becomes 

g44 ~ -1 + 2M4>olr-1[1 + 1/(3 + 2w)] 

+ 4M2if;o2r-2(4 + 2w)( 1 + w)(3 + 2wt2
, 

gll ~ 1 + 2M4>olr-1[1 - 1/(3 + 2w)], 

4> ~ 4>0[1 + (2M4>ol)(3 + 3w)-lr-l ]. 

Now puttingl 

we get 

g44 ~ -1 + (2MGo/r) 

+ (2M2G~/r2)((1 + w )/(2 + w», 
gll ~ 1 + 2MGor-l(1 + w)(2 + w)-r, 

4> ~ 4>0[1 + (2MGo)(4 + 2w)-lr-l
]. 

(17') 

(18) 

(17") 

Thus an approximate solution, correct up to l1r2 to 
the field equations (8), (9), and (10) for the metric (3), 
can be written in the form (17"). 

4. THE THREE TESTS OF GENERAL 
RELATIVITY 

The above solution, to the first order, is sufficient to 
discuss the gravitational redshift and the deflection of 
light. But to discuss the rotation of the perihelion of 
Mercury's orbit requires a solution, to the second 
order, for gu. 

The gravitational redshift is given by6 

1 - ds'lds = 1 - (g~4/g44)i = MGog-l 

(here g~4 does not mean differentation of g44 ,) (19) 

where g is the sun's radius and Go is given by (18). 
The deflection of light is seen tobel 

where R denotes the closest approach distance of the 
light ray to the sun's mass. Thus it differs from the 
general relativity value by the factor in the brackets. 

The derivation of the precision of the perihelion of 
Mercury is a crucial test for general relativity theory 
which requires the knowledge of g44 in the line element 
to second order in MGolr. (In other words nonlinear 
terms in the field equations are required.) 

The motion of a planet (assumed to be infinitesimal 
in comparison with the sun's mass) is represented by a 
geodesic world line of its four equations,4.5 

-+ --=0. d
2
x

i {r:J.{3} dx
a 

dxP 

ds 2 i ds ds 

The equation corresponding to i = 4 gives, for the 
static gravitational field, the energy integral 

dx4 

g44 - = const. 
ds 

Now by using the law of areas 

xl(dx2/ds) - x2(dxl/ds) = const 

and introducing 

Xl = r cos "p, x 2 = r sin "p, 

the integral of area is 

r2(d"Plds) = const = b. 

Now the energy integral becomes 

(21) 

g44[1 - gll(dr/ds)2 - r2(d"Plds)2] = const = E, 

where E is a constant of motion which can be taken 
to be unity to the lowest order in 1/r.7- 9 

Now using (21) and substituting for g44, we arrive 
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at the orbit of the planet 

(dp/dtp)2 

= 2MGopb-2(E - 1 - w)(2 + W)-l 

+ (E + l)b-2 - p2[1 - 2M2G~b-2(2 + W)-l] 

+ 2MGo{1 + w)(2 + wrlp3, (22) 

where P = llr and b2 is also constant of motion such 
that b2 = MGoa(1 - e2) (a being the semi major axis 
for the orbit and e the eccentricity of the orbit). Now 
tp can be expressed in terms of P by an elliptic integral 
of the first kind and, hence, conversely, P is an elliptic 
function of tp. So we have 

tp = f dO{2MGo(1 + w)/(2 + w) 

x [Po - (PI + P2)/2 - (Pl - P2)/2 cos OJ) -t, 
(23) 

where Po, PI' P2 are the positive roots of (23) such that 

llpl = a(l - e), IIp2 = a(1 + e), 

so that 

and 

Po + PI + P2 = [I - (2M2G~)(2 + w)-lb-2 

x (2 + w)(2MGo)-1(1 + W)-l]. 

The perihelion is characterized by the values 0 = 0,27T, 
etc. The increase of the azimuth tp after a full revolution 
from perihelion to perihelion is furnished by the above 
integral taken between the limits ° and 27T; with suffi-

cient accuracy this increase may be set 

27T{2MGo(1 + w)(2 + W)-I[pO - (PI + P2)/2]}-t 

= 27T{1 - 6M2G~b-2 

x [(1 + w)(2 + W)-l + (6 + 3wr1]}-i 
= 27T[1 + 3M2G~b-2(3w + 4)(3w + 6)-1]. 

The advance of the perihelion per revolution is 

otp = 67TM2G~b-2(3w + 4)(3w + 6)-1, (25) 

which is simply the general relativity value multiplied 
by the factor (3w + 4)(3w + 6)-1. 

5. CONCLUSION 

Thus, even though this is an approximate solution 
we see that the results to the second order in llr are 
in agreement with the results of Brans-Dickel and 
Heckmann. 2 But this method of solution of the field 
equations is simpler than earlier methods. 

ACKNOWLEDGMENTS 

The authors express their gratitude to Professor C. 
Brans for his valuable communication to the junior 
author, and also to Dr. P. K. Bhattacharyya and Dr. 
S. R. K. Iyengar of the Indian Institute of Technology, 
Delhi, for helpful discussions. Financial support by 
the Council of Scientific and Industrial Research, 
India, is gratefully acknowledged. 

1 C. Brans and R. H. Dicke, Phys. Rev. 124,925 (1961). 
2 C. Brans, Ph.D. thesis, Princeton University, 196J. 
3 P. Jordan, Schwerkraft und Weltall (Friedrich Vieweg und 

Sohn, Braunschweig, 1955). 
4 H. Weyl, Space-TIme-Matter (Dover, New York, 1922). 
5 W. Pauli, Theory of Relativity (Pergamon, New York, 1958). 
6 J. L. Synge, Relativity: The General Theory (North-Holland, 

Amsterdam, 1960). 
7 R. Adler, M. Bazin, and M. Schiffer, Introduction to General 

Relativity (McGraw-Hill, New York, 1965). 
8 L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, New 

York, 1960). 
9 R. F. O. Connel, Am. J. of Phys. 36, 757 (1968). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12. NUMBER 6 JUNE 1971 

Asymptotic Equivalence of Equilibrium Ensembles of Classical 
Statistical Mechanics * 

LUIGI GALGANI. LUCIANO MANZONI.t AND ANTONIO SCOTTIt 
Istituto di Fisica dell'Universita, Milano, Italia 

(Received 19 June 1970) 

We start from the solution of the problem of the thermodynamic limit for microcanonical entropy as 
given by Ruelle and extend his method to solve the analogous problem of consistency, within the same 
ensemble, for the Legendre transforms of entropy. We solve then in a unified way the problem of the 
asymptotic equivalence of ensembles. 

I. INTRODUCTION 

The motivation of the present paper is the following. 
On the one hand there is now available the solution 
of the problem of the thermodynamic limit for 
microcanonical entropy as given by Ruelle,l which 
in particular provides a rigorous treatment at the 
boundary of the region where the limit entropy is 
defined. On the other hand the same author does not 
prove the asymptotic equivalence of ensembles in a 
unified way. 

A previous attempt2 at giving such a unified treat­
ment was not completely satisfactory because of lack 
of rigor in dealing with the behavior at the above 
mentioned boundary. Moreover, a great simplifica­
tion obtains if, following Griffiths,3 one first demon­
strates the possibility of exchanging the thermodynamic 
limit with the taking of the Legendre transforms of 
micro canonical entropy, and then passes to the 
equivalence of ensembles.4 

In Sec. II we consider the microcanonical ensemble: 
The results by Ruelle on the limit microcanonical 
entropy are recalled (Theorem 1) and corresponding 
results on the 1 egendre transforms are proven 
(corollary). The asymptotic equivalence of ensembles 
is then established in Sec. III (Theorem 2). Details of 
the proof of the corollary are given in the Appendix. 

II. THERMODYNAMIC LIMIT FOR THE 
MICROCANONICAL ENSEMBLE 

We consider a classical continuous system composed 
of one species of particles of mass m > 0 having only 
translational degrees of freedom in a v dimensional 
space. For each integer n > 0 and Xl"'" X n , 

PI' ... 'Pn E RV the Hamiltonian 

is defined. V is the potential energy, which is assumed 
to be Lebesgue measurable with values in R U {oo}, 
invariant under permutations of its arguments and 

under translations. In addition, the following well­
known properties of stability and weak tempering 
will be considered: 

(i) There exist B 2 0 such that V(x I ," . , xn) 2 
-nB for all n > 0 and Xl' ••• , Xn E R V (stability); 

(ii) there exist A > v and Ro > 0, A 2 0, such that 

V(X~,···, X~l' x~,"', X~2) - V(x{,···, x~) 

V( /I /I) < A -). - Xl"'" Xn2 _ nIn2r 

whenever Ix~ - x;1 2 r 2 Ro for all i = 1,'" ,n l , 

j = 1, ... , n2 (weak tempering). 
Let A be a bounded Lebesgue measurable subset of 

RV with volume V(A); for E E R we introduce the 
microcanonical partition function 

x J?[E - H(x l ,"', X n, PI,"', Pn)], 

(1) 

where J? is the characteristic function of the interval 
(0, 00). We further define the microcanonical entropy 

SeA, n, E) = log D(A, n, E), (2) 

where S may take the value - 00 (if D = 0). 
The following theorem has been established by 

Ruelle. 

Theorem 1 (thermodynamic limit for micro canon i­
cal entropy): 

Let S(A, n, E) be defined by (1), (2) for a stable 
tempered interaction. There exist 

(a) Pcp> 0 or PCP = +00, 
(b) a convex continuous function EO on the interval 

[0, Pcp) such that EO(O) = 0 and EO(p) 2 - pB, 
(c) a concave continuous function s on the region 

El = {(p, E):O S p < PCP' E > EO(p)} , increasing in E 
for fixed p and such that s(O, E) = 0 for E > O. 

Let A -+ 00 in the sense of Fisher and 

lim V(A)-ln = p, lim V(A)-IE = E; 
A~oo A~~ 

933 
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(rt) if (p, ,,-) E 0.then 

lim V(A)-lS(A, n, E) = s(p, E), 
A"" 00 

(fJ) if (p, E) belongs to the boundary of 0, then 

lim V(A)-lS(A, n, E) ~ s*(p, E), 
A"" 00 

where s*(p, E) = lims(p*, E*) when (p*, E*) E 0, 

(p*, E*) -+ (p, E), 

(y) if (p, E) belongs to the complement of the closure 
of0, then 

lim V(A)-lS(A, n, E) = - 00. 
A"" 00 

We come now to the problem of the thermodynamic 
limit for the Legendre transforms of entropy within 
the microcanonical ensemble. Let fJ > 0, fl E R; we 
introduce the functions 

$+(A, n, fJ) = sup e-PEQ.(A, n, E), (3) 
E 

function of fl and fJ,f* is a continuous convex func­
tion of fJ, g* is a continuous convex function of fl, 
and in addition 

f(p, fJ) ~ s*[p, EO(p)] - fJEo(p), (11) 

g(fl, E) Z S*[Pi(E), E] - flPi(E), i = 1,2. (12) 

The following corollary of Theorem 1 is proved by 
a modified but closely related version of the method 
used by Ruelle in another context. 6 

Corollary (thermodynamic limit for the Legendre 
transforms of microcanonical entropy); 

Let $+(A, n, fJ), 'Y+(A, fl, E), 3+(A, fl, fJ),f(p, fJ), 
g(fl, E), P(fl, fJ), f*(fJ), g*(fl) be defined by (3), (4), 
(5), (6), (7), (8), (9), (10). Let A -+ 00 in the sense of 
Fisher. 

(i) Let V(A)-ln -+ p: 

(rt) If 0 ~ P < PCP' then 

lim V(A)-llog $ \A, n, fJ) = f(p, fJ); 
A .... 00 

'Y+(A, fl, E) = sup e-l'nQ.(A, n, E), (4) (fJ) if P = PCP' then 
n 

3+(A, fl. fJ) = sup e-l'n$+(A, n, fJ), (5) 
1'/ 

where the suprema are over E E R or integers n > 0; 
the logarithms of such functions are the generalized 
Legendre transforms of SeA, n, E). 

Define Einf = inf EO(p); it is Einf ~ 0 or Einf = 
O:O;P<PCP 

- 00. For E> Einf define further Pl(E), P2(E) as the 
abscissas of the points of the boundary of ° having 
ordinate E; it is 0 ~ Pl(E) < P2(E) < PCP' Let 0 ~ 
P < PCP' E> Einf' fJ> 0; fl E R; then the Legendre 
transforms of s(p, E), 

lim V(A)-llog $+(A, n, fJ) ~ f*(fJ); 
A .... 00 

(y) if p > PCP' then 

lim V(A)-llog $+(A, n, fJ) = - 00. 
A .... 00 

(ii) Let V(A)-lE -+ E: 

(rt) If E > Einf' then 

lim V(A)-llog 'Y+(A, fl, E) = g(fl, E); 
A-+oo 

(fJ) if E = Einf' then 

lim V(Arllog 'Y+(A,fl, E) ~ g*(fl); 
A .... 00 

f(fJ, p) = sup [s(p, E) - fJE], 
<><o(p) 

(6) (y) if E < Einf> then 

g(p." E) = sup [S(p, E) - flP], 
Pl(£)<P<P2(E) 

P(fl, fJ) = sup [f(p, fJ) - flP], 
O$p <PC1J 

are defined. The following functions, 

f*(fJ) = lim f(p, fJ), 
P-+PcP.P<Pcp 

g*(,u) = lim g(fl, E), 
€-+finf.€>Einf 

(7) 

(8) 

(9) 

(10) 

will also be considered. From the properties of s 
stated in Theorem 1, the following properties off, g, 
p,f*, g* are easily proved5 :fis a continuous concave 
function of P and a continuous convex function of fJ, 
g is a continuous convex function of p., and a contin­
uous concave function of E, P is a continuous convex 

lim V(A)-l log 'Y+(A, fl, E) = - 00. 
A-+oo 

(iii) lim V(A)-l log 3+(A, fl, fJ) = P(fl, fJ)· 
A~oo 

Details of the proof are given in the Appendix. 

III. THERMODYNAMIC LIMIT FOR THE 
OTHER ENSEMBLES 

Let fJ > 0, fl E R. The partition functions of the 
ensembles of interest are 

f
+OO ' 

-PE $(A, n, fJ) = fJ -00 dEe .o(A, n, E), (13) 

00 

'Y(A, fl, E) = I e-,W.o(A, n, E), (14) 
1'/=1 

00 

3(A, fl, fJ) = I e-l'n$(A, n, fJ). (15) 
n~l 
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The following inequalities,7 

<J>(A, n, (3) ~ e-PEO(A, n, E), 

\Y(A, fl, E) ~ e-l' nO(A, n, E), 

SeA, fl, (3) ~ e-l'n<J>(A, n, (3), 

will be used in the proof of the theorem below. 

(16) 

Theorem 2 (asymptotic equivalence of ensembles): 
Let <J>(A, n, {3), 'Y(A, fl, E), SeA, fl, {3), f(p, {3), 
g(fl, E), P(fl, {3),f*({3), g*(fl) be defined by (13), (14), 
(15), (6), (7), (8), (9), (10). Then, that which in the 
statement of the co:rollary of Sec. II is predicated of 
the daggered quantities is true for the corresponding 
undaggered ones. 

APPENDIX: PROOF OF THE COROLLARY 
OF SECTION II 

Consider for example case i(IX). Given 15 > 0, from 
Theorem 1 (IX) it follows that for sufficiently large 
A one can find n(A) such that 

(AI) 

so that, a fortiori, it is 

On the other hand, for sufficiently large A and all 
n it is also 

Proof: Consider first case (i). It is, for all n and all so that 
{3 > 0, (A4) 

e-PEO(A, n, E) ~ <J>+(A, n, (3) ~ <J>(A, n, (3); 

using the first inequality in the form O(A, n, E) :::;; 
<J>+(A, n, {3)ePE, we get from (9), for any {3' < {3, 

<J>(A, n, {3) :::;; f3<J>+(A, n, f3) L::e(P'-P)E dE 

= <J>+(A n f3') _{3_ e(P-p')nB 

" f3 - f3' ' 
so that 

<J>+(A, n, {3) ~ <J>(A, n, {3) 

< <J>+(A n {3') _{3_ e(P-P')nB 
- "{3 - {3' ' 

which altogether concludes the proof by referring to 
part (i) of the corollary and to the continuity of f 
and f* as functions of {3. 

The other two cases are treated in an analogous 
way. 

IV. CONCLUSION 

The results obtained in this paper can be summar­
ized as follows: 

(i) Within microcanonical theory a corollary to the 
fundamental theorem of Ruelle on the existence of 
the limit entropy (Theorem 1) is given. It guarantees 
the possibility of exchanging the limit with the 
taking of the Legendre transforms of entropy. 

(ii) The asymptotic equivalence of the ensembles 
is established in a straightforward and unified way 
(Theorem 2). 

We have explicitly considered four ensembles. 
The application of our method to the others is 
straightforward. 

Indeed, if (A3) were not true, there should exist a 
sequence 

(Ai' ni , EJ, V(Ai) -- r:fJ, V(Ai)-lEi -- E > Einf 

such that 

considering then all possible limit points of V(Ai)-lni , 
we would contradict Theorem 1 (IX), ({3), or (y); in 
particular the contradiction to ({3) is a consequence of 
(11). 

From (A2) and (A4) , part i(lX) of the corollary 
immediately follows. All other cases are treated in an 
analogous way. 
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The scattering of asimple nonspherical potential with spheroidal symmetry is discussed. The spheroidal 
partial wave analysis method is used. It is found that the spheroidal phase shifts have the similar physical 
meaning as the conventional spherical phase shifts. The integral equation for the spheroidal phase 
shift is given. The scattering by a discontinuous spheroidal potential is also presented. The WKB approxi­
mation is used to evaluate the spheroidal phase shift at high energy. For small angle scattering our 
formulation reduces to a simple form as in the eikonal description. 

1. INTRODUCTION 

A study of a nonspherical potential scattering 
problem is presented here. We shall only discuss the 
potential with oblate spheroidal symmetry,l not just 
for its mathematical simplicity, but also for some 
deep-rooted physical reasons. 

Up till now, the most often used potential in the 
scattering theory is a spherical one, or a modification, 
for example, through spin-orbit coupling. The choice 
is suitable for systems where the relative distance 
between the objects is large compared to their particu­
lar sizes, since the potential between them will be 
essentially spherical. Such a potential will not violently 
disturb the internal states of the system in the scatter­
ing process; thus the important fundamental conser­
vation laws can be directly and explicitly implemented 
without having to introduce an excessive number of 
variables. In the special case for pointlike objects with 
some intrinsic properties, the spherical potential is in 
fact the only possible choice, since the relative 
distance is large compared to their zero spatial extent 
and no other internal excitation is available. 

However, most physical systems are more complex. 
In a high energy scattering process, even the ele­
mentary particles are no longer treated as pointlike 
objects, and the relative potential between them 
depends not only on their distance but also on their 
shapes, mass distribution, internal structures, and 
motions. The effect of the above dependences becomes 
more pronounced at small distances relative to the 
size of the objects. This leads us to the belief that an 
investigation of a nonspherical scattering problem will 
be worthwhile and should provide us with some new 
insights into the problems of high energy scattering 
processes. 

For practical purposes and to avoid overcomplexity 
we have disregarded certain physical phenomena 
associated with a nonspherical potential, namely the 
change in the shape and mass distribution of the 
objects, etc. Consequently, the nonspherical potential 
we choose to study is that of an oblate spheroidal 

symmetry. Such a potential is closely related to a 
spherical one, as the latter may be considered as a 
special type of spheroidal potential. The choice was 
made on the basis of a new approach to the high 
energy scattering process of elementary particle 
physics. 

It has been suggested2 that one should treat ele­
mentary particles as extended objects in the high 
energy scattering process, rather than a mathematical 
point with some intrinsic properties. This idea is quite 
closely related to the quark model approach in which 
the elementary particles are no longer considered as 
elementary, but as composite. In the quark model one 
often stresses the internal composition of the con­
stituents. In the extended object model, which 
sometimes is called the droplet model, the spatial 
distribution and character of the objects are empha­
sized. In order to take into account the above proper­
ties, Byers and Yang3 pictured the high energy 
scattering process as a wave passing through the 
Lorentz-contracted optical medium. The medium has 
a particular shape which is in the form of a disk or 
ellipsoid. These shapes are all spheroidal in nature. 
The scattering by a spheroidal shaped optical medium 
can be viewed as the scattering by a spheroidal 
potential. The same picture is also used in the reflection 
model4 which treats the high energy backward 
scattering as a process at the discontinuous boundary 
of the disk. The successes of the Byers and Yang 
model and the reflection model stimulated the present 
investigation. 

The spheroidal potential is not totally nonspherical, 
and is characterized by an interfocal distance. At a 
large distance compared with the interfocal distance 
the potential can be treated as spherical. At a closer 
distance the nonspherical nature appears. Hence the 
proposed potential satisfies the intuitive physical 
requirement on the relative potential of two extended 
objects. In other words, a spherical potential is 
expected at large distance compared to the size of the 
objects, and the distorted nonspherical potential is 

936 
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confined to their immediate vicinity, so physically it 
is a very meaningful nonspherical potential. The 
importance of the spheroidal potential in modern 
physics was mentioned by Rainwater, Granger, and 
Spence5 nearly twenty years ago. They po~nte~ out 
the necessity for introducing such a potential m the 
determination of nuclear energy levels. 

For a spherical potential one uses the conventi~nal 
partial wave analysis method. F~r a sp~eroldal 
potential one may employ the spheroIdal partIal wave 
analysis method,6 which is adopted in the present 
investigation. These two analytical methods bear a 
very close resemblance. Furthermore, the spherical 
potential can be viewed as a special.kind of.spheroidal 
potential for which the interfocal distance IS small. 

The spheroidal partial wave analysis has been used 
in the classical scattering theory of sound and electro­
magnetic waves on a spheroidal object. The problems 
treated there have the character of boundary value 
problems. The basic method of the spheroidal analysis 
is well known and will not be repeated here. In Sec. 2 
the problem of the present study is form.ulated. In 
Sec. 3 an integral equation for the spherOidal phase 
shift is given. The equation is very similar to the one 
in the spherical phase shift analysis. In Sec. 4 we 
discuss the scattering by discontinuous oblate spher­
oidal potentials. It. is foune! that the low order 
spheroidal phase factor 2bn is due to the difference of 
the optical path caused by the existence of the oblate 
spheroidal square well. This is the same result as for 
the spherical phase factor 2b! in the scattering by a 
discontinuous spherical potential. In Sec. 5 the WKB 
approximation is discussed in the high energy scatter­
ing process. It is pointed out that the low ord~r 
spheroidal partial wave can be treated as a hyperbolIc 
trajectory. In Sec. 6 we deal with the very high energy 
scattering amplitude at small angles. It is shown that 
the spheroidal scattering amplitude at small angles 
approaches a limiting form. The limiting form some­
times is called the eikonal description, which is widely 
used in high energy scattering processes. 

2. OBLATE SPHEROIDAL COORDINATES 

The spheroidal partial wave analysis is conveniently 
described by spheroidal coordinate systems. There are 
two such systems. The one that is related to our 
problem is the oblate spheroidal coordinate system. 
The oblate spheroidal coordinates for the relative 
distance r are defined by following equations: 

x = (dj2)[(1 - 'f}2)(~2 + I)]t cos cp, 

y = (dj2)[(1 - 'f}2)(~2 + I)]t sin cp, (2.1) 

z = (dj2)'f)~, 

with 0 ~ ~ < 00, 0 ~ '17 ~ 1, 0 ~ cp ~ 27T, and d the 
interfocal distance. The surface ~ = const, 

x
2 + y2 + Z2 = (~)2, 
~2 + 1 e 2 

(2.2) 

is a flattened ellipsoid, which we will refer to as a 
spheroid, of revolution with major axis of le~~th 
d(~2 + I)t, minor axis of length d~, and eccentnclty 
e = Ij~. The surface l'f}l = const < I, 

x
2 + l _ Z2 = (~)2, 

1 - 'f}2 'f}2 2 
(2.3) 

is a hyperboloid of revolution with an asymptotic cone 
inclined at the angle () = cos-1 '17 to the z axis. In the 
limit when the interfocal distance d becomes zero, the 
oblate spheroidal coordinate system reduces to a 
spherical coordinate system; the limiting relations are 

d-O, td~-r, and 'YJ-cos(), (2.4) 

where rand (j are the spherical coordinates. Relation 
(2.4) indicates that any formulation based on a 
spherical coordinate system is a limiting form of a 
corresponding one in the spheroidal system. 

The spheroidal analysis of the scattering amplitude 
has been discussed in the classical scattering theory of 
sound and electromagnetic waves. 7 The problems 
treated are the classical boundary value problems of 
the scattering of sound waves by a rigid spheroid and 
of the scattering of electromagnetic waves by a 
perfectly conducting spheroid. (A thin rod and. a 
circular disk may be considered as two speCial 
spheroids. These two cases have attracted most 
attention.) The problem proposed here is a potential 
problem in quantum mechanics. The Schrodinger 
equation 

_1i2 1i2k2 

- V2 'lfJ + V(~, 'f}, cp)'lfJ = - 'lfJ (2.5) 
2~ 2~ 

has the form 

[~(l - 'f}2)~ + ~(e + 1)~ 
0'17 0'17 o~ o~ 

+ (_1 ___ 1 _)~ + (tkdl(e + '172) 
1 - r/ 1 + e Ocp2 

- ~d2 a2 + 'f}2)V(~, 'f}, cf»J"P = 0, (2.6) 
21i2 

where ~ is the reduced mass and k the incident 
~omentum in the center of mass frame. The potential 
V(~, '17, cf» has the property 

~d2 (~2 + 'f}2)V(~, 'Yj, cf» == U(~) 
21i2 
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and 
s~oo 

Ua) ----+0, (2.7) 
or 

V(r) = V'(r), ; < ;0' 
= 0, ; > ;0' (2.8) 

where V' (r) is a continuous function. Potential (2.8) 
might be called a spheroidal optical medium in the 
case of a complex potential V'(r), and i d;o denotes 
the size of the medium. The scattering picture given 
by this potential resembles the eikonal description of 
Byers and Yang3 in the droplet model. 

The conventional phase shift analysis is one of the 
variable separation methods in mathematical 
physics for solving partial differential equations. The 
choice of a particular separation method depends on 
the problem. It is known from classical scattering 
theory that for these potentials in Eqs. (2.7) and (2.8) 
the conventional phase shift analysis is inadequate 
and should be replaced by the spheroidal phase shift 
analysis. Then the scattering amplitude fk(O) should 
be expressed as 

{" (0) _1.. ~ 1 
.!k -ik";-Non(-ie) 

x SOn( - ie, I)Son( - ie, 1J)(e2iOn - 1), (2.9) 

where SOn( -ie, 'Y) are the oblate spheroidal angle 
functions Smn( -ie, 'Y) with m = 0. The normal­
ization constant is determined by 

f l Smn( - ie, 'Y)Smn.( -ie, 'Y) d1J = 0nn·N mn( - ie), 
-1 

(2.10) 
where 

e = ikd. (2.11 ) 

The phase shift on defined here has the same physical 
meaning as the phase shift 01 in the spherical scattering 
case. Namely, on is the phase difference between the 
asymptotic solution and the potential free asymptotic 
solution of the spheroidal radial equations. The 
conventional spherical analysis can be viewed as a 
special case of Eq. (2.9) in the limit given in Eq. (2.4). 
A comment should be made about Eq. (2.9). It is 
known that the scattering amplitude fk«() is defined 
in the asymptotic region of the scattered wave. In this 
region there is no difference between the values 'Y) and 
cos O. 

3. INTEGRAL EQUATION FOR PHASE SHIFTS 

In this section we would like to derive an explicit 
expression for the spheroidal phase shifts on in terms 
of the potential (2.7). It is well known from scattering 
theory that the eigenfunction tp~+)(r) satisfies the 

integral equation 

(+)( ) ikr cos 9 flo 
tpk r = e ---

211"n2 

xJ exp (ik Ir - r'l) V(r')tpi+)(r')dV. (3.1) 
Ir - r'l 

The expansion of the eigenfunction tp~+)(r) in terms of 
oblate spheroidal functions can be written as 

tpk+)(r) = 2! in 1 
n Non(-ie) 

X SOn( - ie, 1)Son( - ie, 'Y)Ton( - ie, i;). (3.2) 

The radial eigenfunction Ton( -ie, i;) has the asymp­
totic expression 

Ton( - ie, i;) ~ eiOn[R~l~( - ie, i;) cos on 

- R~2~( - ie, i;) sin on]. (3.3) 

The spheroidal expansion of the free space Green's 
function is written as 

eik Ir-r'l 

411" Ir - r'l 

ik 00 00 2 - bom . .' 
= -! ! . Smn( -Ie, 'Y)Smn( -Ie, 'Y) 

211" m=O n=O N m'''{ -Ie) 

(
R~~( - ie, i;)R~~( - ie, W), 

X cos m( rp - c/>') ; < ;', 
R~~( -ie, inR~~( -ie, i;), 

; > ;', 
(3.4) 

where R~~( -ie, i;), R~~( -ie, i;), and R~~( -ie, i;) 
are the spheroidal radial functions; the vector r' has 
the spheroidal coordinates t, 'Y)', and rp'. For the 
potential given in Eq. (2.7), one can express Eq. (3.1) 
as follows: 

(+)( ) _ ikrcos9 _ ikd ~ ~ 2 - born S (_. ) 
tpk r - e £., £., . mn Ie, 'Y) 

411" m=O n=O N mn( -Ie) 

,",' .... 2 S ( . 1) X £., I On' -Ie, 
n' Non'( - ie) 

X J d¢' cos m(¢ - ¢') 

X J d'Y)'Smn( - ie, 'Y)')SOn( - ie, 'Y)') 

X (R~~( -ie, i;) l<d;'R~~( -ie, in 
X U(~')Ton.(-ic, in + R~~(-ic, i~) 
X Lood;'R~~(-iC, inU(~')Ton·(-ic, in). 

(3.5) 
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Using the orthogonality relation (2.10) and integrating 
over the range of the variables r/ and cp' , we get 

1J'k+)(r) = eikr cos II - ikd 

x I in SOn( - ie, 'Y})Son( - ie, 1) 
n=O N on( - ie) 

X (R~~(-ie, i~) Cd~'R~~(-ie, in 
• 0 

x U(~')Ton( - ie, i~') + R~l~( - ie, i~) 

X fXl dfR~~~(-ie, inU(~')Ton(-ie, in). 
(3;6) 

From the plane wave expansion 

ikrcos6 2"'n 1 e = ~I 

one obtains 

TonC - ie, i~) 

n N on( -ie) 

X SOn( -ie, 1)So,,( - ie, 'Y})R~~( - ie, i~), 
(3.7) 

_ R(l)(_' 'C) _ ikd R(3)(_' 'C) 
- On Ie, I" On Ie, I" 

2 

X fdtR~~(-ie, inU(~')Ton( -ie, in 
ikdR(l)( . 'C) - - 0 -Ie I" 2 n , 

X f" d~' R~3~( - ie, inU(~')Ton( - ie, i~'). (3.8) 

The integral equation for the phase shifts follows from 
the asymptotic behavior of Eq. (3.8). By utilizing the 
asymptotic forms l 

R~~( - ie, i~) --+ .in(kr), 
c~-oo 

R~~( -ie, i~) ~ nn(kr), (3.9) 
C':j-oo 

R(3) (- ie i~) --+ h(l)(kr) 
mn , Cs_ OO n 

and asymptotic expansions for the spherical Bessel 
function jn' Neumann function n", and Hankel 
function h", the following equation can be obtained 
from Eq. (3.7) in the limit e~ --+ CIJ: 

ei6n cos [e~ - len + 1)7T + 0,,] 

= cos [e~ -len + 1)7T] - ikd exp i[e~ -len + 1)] 
2 

x 100 

dfR~l~(-ie, i~')U(~')To,,(-ie, i~'). (3.10) 

Let us introduce a new radial function UOn( -ie, i~') 
which is defined by 

UOn( -ie, i~) == Ton( -ie, i~)e-i"n. (3.11) 

Finally we arrive at the simple formula from Eq. (3.9) 

sin on = -tkd 100 

d~'R~~( -ie, inU(~')Uon(-ic, in· 

(3.12) 

It is only a matter of a few steps to check that,in the 
limit as e --+ 0, Eq. (3.12) reduces to the integral 
equation satisfied by the conventional phase shifts . 

4. DISCONTINUOUS OBLATE SPHEROIDAL 
POTENTIAL 

The potential given in Eq. (2.8) is discontinuous on 
the boundary of a spheroid ~ = ~o. Outside the 
spheroid the potential is zero, and the wavefunction 
1J'k+)(r) can be written as 

1J'kr)(r)=22in 1. So,,(-ie,1)Son(-ie,'Y}) 
n NOn(-le) 

X eiOn(R~~( - ie, i~) cos On 

- R~~(-ie, i;) sin on], ~ > ~o. (4.1) 

The value of the phase shift on is determined by 
solving the Schrodinger equation inside the spheroid 
(~ < ~o), with the regularity requirement at the origin 
(~ = 0, 'Y} = 0), and by joining the interior solution 
smoothly onto the exterior solution (4.1) at ~ = ~o. 

The final expression for the phase shift on depends on 
the explicit form of potential V' in Eq. (2.8). In this 
section we shall present a discussion for two simple 
potentials V'. 

(1) The potential discussed has the form 

112 /:2 

V'(r) == V'(~ -I.) = - (k2 
_ /(2) -"-

,'Y},'t' 2f-l e+'Y}2' 

~<~O, (4.2) 

where k' will be called the interior wavenumber. The 
regularity at the origin requires R~~(-ie', i~) as the 
interior radial function, where c' = tk'd. By joining 
smoothly the interior and exterior radial functions at 
the boundary ~ = ~o, we obtain the relation satisfied 
by the spheroidal phase shift on: 

iOn '.1> 2iXn Sn + -iXn • e Sm Un = e e sln X Ll' n' fJn - n - IS" 
(4.3) 

The parameters X"' Sn' fJn' Lln are determined by 

A 'S R~:::'(-ie, i';o) 
U + I = - ---'O;c:......:...._~.:::.. 

" n R~:::( - ie, i~o) , 

R~(l)'( ., '/:) 
On -Ie, 1"0 

fJn = R(1)(_. , '/:) , 
On Ie, 1"0 

R~~( - ie, i~o) 

R~:::( - ie, i';o) , 

(4.4) 
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where R~~( -ie, ~) is the spheroidal radial function 
R:!~( -ie, m with m = 0' and the prime denotes the 
derivative with respect to the variable ~. 

(2) The potential discussed has the form 

V'(r) == V'(~, 'YJ, 4» = (/i 2j2ft)(k2 - k'2), ~ < ~o. 
(4.5) 

Potential (4,5) might be called a spheroidal square 
well with range t d~o and interior wavenumber k'. 
From the regularity requirement, the interior wave­
function has the form 

(+) An (1).. . , 
'lfk (r) = 1 . , ROn(-le, 1~)SOn(-le ,'YJ), 

nNon(-le) 
~ < ~O, (4.6) 

for the spheroidal angle function Son( -ie, 'YJ), and 
should not appear in the expression for the scattering 
amplitude. For simplicity, this constant is omitted in 
the discussion. In the limit as e -- 00, the coefficient 
Ann' can be expressed as 

A f1e-(c+C')(1-~) 
n'n ----+ 

c-+ 00 0 

X L v,[2e'(1 - 'YJ)]Lv[2e(1 - 'YJ)] d'YJ 

+fo (_ )n+n'e-(c+C')(l+~) 
-1 

X Lv,[2e'(1 + 'YJ)]L y[2e(1 + 'YJ)] d'Y} 

= 1- [00[1 + (_)10+"'] 
2e Jo 

X e-(1+f )"'L v,[(1 + 2€)x]Ly[x] dx, (4.12) 
where An are arbitrary parameters and e' = ik'd. where 
The smoothness on the boundary yields the following 
relation: 

v' = n'j2, n' even, 

= i(n' - 1), n' odd, (4.13) 

[R~~,( -ie', i~0)r1(21-1- Son( -ie, 1)An,,,i6n 
n Non 

X [R~~( - ie, i~o) cos t5n - R~~( - ie, i~o) sin 15,,]) 

[R (1)'( .,./: )]-1(2 ~ 1 S ( . l)A i6n = On' -Ie, 1"0 £.. - On -Ie, ,,'ne 
n Non 

X [R~~'( - ie, i~o) cos 1510 - R~~'( - ie, i~o) sin On]), 

(4.7) 
where 

An'n = L: SOn'( - ie', 'YJ)Son( - ie, 'YJ) d'YJ. (4.8) 

In order to exploit the physical meaning of the 
spheroidal phase shift t5n implied by Eq. (4.7), we 
shall restrict ourselves to a special case with 

Ie - e'l «e and e -- 00. (4.9) 

In the limit as e -- 00, the spheroidal angle functions 
have the form 

----+ const 

where 
v = n12, n even, 

= Hn - 1), n odd, (4.11) 

and Lv(x) is the Laguerre polynomial. The arbitrary 
constant in Eq. (4.10) depends on the normalization 

and 
€ = (e' - e)j2e. (4.14) 

After evaluating the above integration,one arrives at 

An'n = {lj2e)[1 + (- )n+n']( - »M+Y' 

rev M + 1) YM-Ym 
X € ,(4.15) 

r(vm + l)r(vM - Vm + 1) 

where 
vm = min (v, v') 

and 
V M = max (v, v'). (4.16) 

The renormalization constant can be found in the 
same way: 

Non = lie. (4.17) 

By using the above approximations, Eq. (4.7) can be 
expressed as 

[R~~( - ie', i~O)]-l{ i6n[R~~( - ie, i~o) cos t5n 
- R~~( - ie, i~o) sin t5 n ] 

- (v + 1)€ei6n+2[R~~+2( -ie, i~o) cos 15 10+2 
- R~~+2(-ie, i~o) sin 0,,+2] 

- v€ei6n-2[R~~_2( - ie, i~o) cos °10- 2 

- R~~_2( - ie, i~o) sin t5n - 2J} 
= [R~~' (- ie', i~O)]-l{ ei6n[R~~'( - ie, i~o) cos 1510 

- R~~'( - ie, i~o) sin 0n] 

- (v + 1)€ei6n+2[R~~~2( - ie, i~o) cos °10+2 

- R~~~2( - ie, i~o) sin °10+2] 
- v€ei6n-2[R~~~2( - ie, i~o) cos 0n-2 

- R~;:~2( -ie, i~o) sin 0n-2]}' (4.18) 
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A simpler form can be obtained by neglecting the 
higher order contribution with respect to parameter 
E in Eq. (4.18): 

[R~~( - ie', i~o)rl 

X {(I + io,,)[R~~(-ie, i~o) - o"R~~(-ie, i~o)] 
- (v + 1)ER~~+2(-ie, i~o) - vER~~_2(-ie, i;o)} 

= [R~~'( -ie', ;~o)1-1 

X {(l + io,,)[R~~'(-ie, ;;0) - onR~~'(-ie, ;;0)] 

- (v + l)ER~~~l-ie, i~o) - vER~~~2(-ie, i;o)}. 

(4.19) 

The spheroidal radial functions have the following 
simple asymptotic forms at large e and small n: 

R~~( - ie, i;o) 

= [eel + eg)]-l[cos(e;o - tn1T) + ;0 sin (ceo - !n1T)] 

= (l/e)(1 + ~~)-f cos (ceo - !n1T - IX), 

R~~( - ie, ;;0) 

= [e(l + e~)]-l[sin(eeo - !n1T) + ~ocos(e~o - !n1T)] 

= (l/e)(l + e~)-f sin (ceo - !n1T + IX), 
(4.20) 

R~~'( - ie, i~o) = -(1 + e~)-isin (e;o - !n1T - IX), 

R~~'( - ie, i~o) = (1 + ;g)-f cos (e;o - !n1T + IX), 

where 
tan IX = ~o. (4.21) 

In terms of the above asymptotic forms, Eq. (4.19) 
can be rewritten as 

tan (e' eo - !n1T - IX) = tan (ceo - tn1T - IX + (J), 

(4.22) 
where 

{J 
on cos 20t 

tan = ~ bn . 
1 + iOn + (2y + l)E - On sin 2IX 

(4.23) 

Finally, the phase shift 151' can be approximately 
ex pressed by 

20" = 2(c' - e)eo = (k' - k) d;o. (4.24) 

The length d;o is the minor axis of the spheroid, in 
which the spheroidal square well is confined. For a 
spherical square well the spherical phase shift 01 can 
be also expressed in the same form as in Eq. (4.24). 
The physical interpretation of Eq. (4.24) is simple. 
It states that the spherical phase factor 201' is due to 
the difference of the optical path caused by the 
existence of the oblate spheroidal square well. 

In the spherical square well scattering process, the 
Legendre functions are used for expanding the 

scattering amplitude, and the partial wave amplitudes 
are expressed in the forms of the spherical phase shifts. 
In the case of the spheroidal square well, the spheroidal 
angle functions are used, and the spheroidal partial 
wave amplitudes are expressed in terms of the 
spheroidal phase shifts. Since the spherical and 
spheroidal phase shifts describe the same physical 
consequence, we may conclude that, at least in the 
square well cases, the shape of the potential determines 
the form of the expansion basis functions, and not the 
partial wave amplitudes. 

5. WKB APPROXIMATION 

The semiclassical approximate WKB method7 for 
solving the radial part of the wave equation (2.6) with 
potential (2.7) is presented in this section. This method 
is only applicable to high energy scattering processes. 
Let 

TonC -ie, i$) = (I + $2)-tGon(-ic, i~), (5.1) 

then the radial wave equation has the form 

d
2

2 
GonC - ie, in d; 

- 1 ~ eL ~ ;2 + AOn + U(~) - e2e] 
X GOn( - ie, i~) = 0, (5.2) 

where AOn is the eigenvalue associated with the 
spheroidal anglefunction SOn( - ic, 1]). On making the 
transformation 

and on setting 
(5.3) 

GOn( - ie, i~) = eX
/
2Uo,.(CX), (5.4) 

Eq. (5.2) has the form 

[ 
d2 2] dl + Q (X) Von(e, X) = 0, (5.5) 

where 

- Q2(X) = i + [ 2 e
a 

9 + AOn 
e + e-X 

+ VCx) - e2X
] e

2X 

• (5.6) 
e2 + e2x 

Using the standard WKB procedure, the solution for 
the differential equation (5.5) can be given as 

VOn(e, X) = F[Q(X)]-! sin [~ + L:Q(S) dS} 

where XO is the turning point 
X>Xo, (5.7) 

Q(Xo) = 0 (5.8) 
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and F is a normalization constant. It is apparent that 
the chosen potential (2.7) should give one and only 
one turning point Xo for Eq. (5.7) to hold. After setting 

(5.9) 
where 

p2(~) = [e2e - 1/(1 + e) 
- AOn - U(~)](l + ~2r1 - 1/4e, (5.10) 

the radial wavefunction Ton( -ie, i~) may be expressed 
by 

Ton( -ie, in 
= F.Je (1 + er!p-lm sin [~ + l:p(~) d~ J 

~>~n' (5.11) 
where 

(5.12) 

From Eq. (3.3) and the asymptotic form of the radial 
spheroidal function, we have 

Ton( -ie, i~) ~ (1je~) cos [Dn + d - Hn + 1)1T]. 
g-... oo 

(5.13) 

However, from Eq. (5.11) the asymptotic form should 
be 

Ton( - ie, i~) 

~ F.Je sin (~+ f'Xl[p(~) _ e] d~ + e~ - e~n). 
?~oo e~ 4 Jsn 

(5.14) 

Comparing Eqs. (5.13) with (5.14), the phase shift Dn 
is determined by 

Dn = E (n + t) - e~n + roo [p(~) - e] d~ + 2n'1T, 
2 Jl;n 

(5.15) 

where n' is an arbitrary integer. In the case of zero 
potential, there should be no scattering and the phase 
shift Dn is zero. Thus the phase shift 15" in Eq. (5.15) 
is obviously the difference 

bn = [00 [p(~) _ poe;)] d;, (5.16) 
Jsn 

where 

pg(~) = [e2e - (1 + e)-1 - Aon](1 + ~2)-1 - 1/4e. 

(5.17) 

In the eikonal approximation, the Born term is used 
to evaluate the phase shift in Eq. (5.16) 

15(1) = _! (00 U(~) d" (5.18) 
n 2)sn (1 + ~2)pom 

and in the approximation the parameter '" is deter­
mined by the equation 

pga,,) R::i 0, 

and can be expressed as 

(5.19) 

~~ R::i (2e~2r1[(A~" + e2)! + Ao,,]. (5.20) 

The eigenvalue Ao,,( -ie) has a simple form for large 
value e: 

Ao,,( -ie) ~ -c2 + 2c(2v + 1), (5.21) 
c~oo 

where v is given by Eq. (4.11). In the applicable region 
of the eikonal approximation, the eigenvalue Ao,,( -ie) 
determined by Eq. (5.21) would be large for most 
spheroidal order n. The phase shift D~ll in Eq. (5.18) 
can be written in terms of the parameter ~: 

15(1) = _ 1- roo ~U(~) d~ 
")1 !. 2e Sn [(1 + e)(e - ~2)(e + _l_)J 

n 4e2~~ 

(5.22) 

The above integration is only carried out over ~ > ~". 
It means that the phase shift D~1) of the spheroidal 
partial wave only depends on the potential in the 
region 

(5.23) 

where R is the distance from the scattered center. The 
parameter ~" is a monotonically increasing function of 
the spheroidal partial order n. These facts lead us to 
the picture that the high order spheroidal partial waves 
are the waves at large distance from the scattering 
center. The picture is the same as that observed in the 
spherical scattering. 

The physical meaning of the phase shift D~l) can be 
more explicitly understood in the low partial orders. 
From Eqs. (5.20) and (5.21) the quantity ~n at small 
order n can be approximated by 

~o = HI + (2v + l)je], n« e. (5.24) 

By using the above approximation, Eq. (5.22) has the 
form 

D~) = _1- (00[(1 + e)(1 + e _ 2 2v + 1) 
~Jh e 

]
-! 

X (~2 - ~~) U(~)~ d~ 

1 [00 U[(e + ~!)t] d~ 
R::i - ~ Jo -e-+-=~;':';!~+--"':1"::_;;"":'2-V":'+-1 

e 

The above expression can be rewritten in terms of 
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potential (2.7), 

2b~) = - (~~H f'J v«e + ~;)t, 
1 

[1 - (2v + 1)/c]~, 0) dr (5.25) 

Equation (5.25) implies that the spheroidal phase shift 
(J~l) with small order n only depends on a spatial 
integration along a hyperbolic trajectory. Since 
potential (2.7) is cylindrically symmetric with respect 
to the z axis, the trajectory can be viewed as a tra­
jectory on the xz plane, 

x2[(2v + l)/c]-l - z2[1 - (2v + l)/c]-l = (d/2)2. 

(5.26) 

The closest distance Xn between the origin and the 
trajectory is equal to 

Xn = (d/2)[(2v + l)/c]! = (d/2) (n/c)!. (5.27) 

From the above discussion we can draw a physical 
picture. In the eikonal approximation of the high 
energy scattering process, each low order spheroidal 
partial wave can be considered as a classical trajectory, 
and the trajectory passes the scattered center at a 
distance X n . The picture is the same as in the eikonal 
approximation of the spherical potential scattering 
process. In such a process the spherical partial wave 
with order ns is pictured as a linear trajectory with an 
impact parameter b = (ns + l)/k. 

6. HIGH ENERGY SCATTERING AMPLITUDE AT 
SMALL ANGLE 

The spheroidal expansion of the scattering ampli­
tude /k(O) has a complicated form. If one is interested 
only in the small angle scattering process at high 
energy, then a simpler form can be 0 btained. 

For small arguments x there exists a relation between 
the Laguerre polynomial L.(x) and the Bessel 
functionS 

(6.1) 

By utilizing the above relation and Eq. (4.10) the 
scattering amplitude in Eq. (2.10) at small angle can 
be written as 

x [(e2i02V - 1) + (e2i02
V+l - 1)]. (6.2) 

For the high energy scattering process, the terms 
involved in the above series are very many. It is a good 
approximation to replace the above summation by 
an integration, and neglect the difference of the 

adjacent phase shifts 

fk(O) ;:;,; ~c IJo{2[2cv(1 - 'i])]i}[e2M2V - 1] 
lk v=o 

where 

;:;,; ik i <Xl (1 - e2io(Bl)J o(BJ - t)B dB, (6.3) 

B = (2/k)(cv)i 
and 

b(B) = (J2v' (6.4) 

The momentum - t is defined in the usual way: 

-t = 2k2(1 - cos 0) = 2k2(1 - '1]). (6:5) 

The small angle scattering amplitude is expressed in 
terms of the Fourier-Bessel transform of the spher­
oidal partial wave amplitude. The expression is often 
seen in discussions of high energy scattering processes 
under the name of the eikonal description. In the 
conventional method, the Fourier-Bessel transform 
comes from the spherical partial wave analysis of the 
scattering amplitude. However, Schiff and Wu9 have 
shown that, even for a nonspherical continuous 
potential, the Fourier-Bessel transform can also be 
used to express the scattering amplitude. They wrote 

fk(O);:;,; ik iOO{l - exp [-i ;kJL:VcCb, z) dZ} 

X Jo(bJ-t)bdb, (6.6) 

whe~e b is the impact parameter; Vc(b, z) is any 
spherical or nonspherical continuous potential. The 
spheroidal potential Eq. (2.7) used in the present 
paper may have two singularities at focal points. 
Equation (6.3) shows that, even in the existence of 
such a singularity, the eikonal description may be 
used. It is also interesting to see whether Eq. (6.3) is 
reducible to the form of Schiff and Wu, Eq. (6.6). 
We shall discuss such a problem. By comparing Eq. 
(6.3) and Eq. (6.6), the spheroidal phase shift in the 
sense of Schiff and Wu is expressed as 

, fl foo (jiB) == - -2 V(B, z) dz, 
21i k -00 

(6.7) 

where the potential V is given in Eq. (2.8). In the 
oblate spheroidal coordinates system the above 
integration has the form 

(J (B) __ l..lro U(~) d~ 
8 - 2c Sn' [(e + 1)(e + 1 _ 4B2d-2)]! ' 

where 

(

0, 

~~ = (2/d) ( B2 - ~r 
B < d/2, 

B> d/2. 

(6.8) 

(6.9) 
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For the high energy scattering process, the spheroidal 
phase shift b~l) in Eq. (5.22) evaluated by the WKB 
approximation may be used for evaluating the 
spheroidal phase shift b(B) in Eq. (6.3): 

o(B) = - .l L" ~V(~) d~ . 

2c ~n [(1 + e)(e - ;~)(e + 4C!~~) r 
(6.10) 

If the function V(~) in Eqs. (6.8) and (6.10) has the 
property 

1 V(I:) ~-->O fi' - \i --+ mte, 
~ 

(6.11) 

then one can prove that 

Ib,(B) - b(B) I ~ O(1/)c) at c -->- 00. (6.12) 
Ib(B) I ' 

The potential V(~, 'f}, 4» in Eq. (2.7), with the con­
dition Eq. (6.11), might have two singularities at focal 
points of the spheroidal coordinate system. It shows 
that even for some discontinuous potentials the 
formulation given by Schiff and Wu may still hold. 
Although our scattering amplitude at small angle can 
be reduced to the general Schiff and Wu form in the 
high energy limit, at finite energies a difference 
between them does exist. 

The thin-disk potential is a special kind of oblate 
spheroidal square well. The oblate spheroid within 
which the potential is confined has a small minor axis 
oflength d~o. We have already discussed the spheroidal 
phase shifts from the oblate spheroidal potential in 
Sec. 4. The exact determination of the scattering 
amplitude through these spheroidal phase shifts, even 
for a disk type potential, is tedious. At the end of 
Sec. 5 it was pointed out that, for a chosen spheroidal 
partial wave, the phase shift only depends on the 
potential at region R ~ t d~o. Since, for the disk well, 
the potential is zero outside the spheroid (~~ ~o), 
the spheroidal partial waves with ~n > ~o are not 
disturbed in the scattering process, and their corre­
sponding partial wave amplitudes should vanish. For 

the thin-disk well the spheroid partial waves with 
small ~ n will contribute to the scattering amplitude. 
From Eqs. (5.20) and (5.21) the contributed partial 
wave has 

(6.13) 

for the high energy scattering process. From Eqs. 
(4.24), (6.3), and (6.13), the small angle scattering 
amplitude from the thin-disk well has the approximate 
form 

fiO) ~ ik(l - ei(k'-k)d~O) id/2Jo(B)-t)B dB 

= ic(1 - i(k'-k)d~0/1[(d/2»)-t]. (6.14) 
)-t 

The above expression is a familiar one as it is often 
encountered in the problem of scattering by a disk.10 
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It is shown that particlelike solutions of the form 1p = q;(r)e-iW' to the nonlinear field 

\l21p - c-2'iJ21pjot 2 = K21p - fl21p1p*1J! + A1pIJ!*IJ!1p*1p 

can exist for a certain range of the field parameters. The stability of the lowest-order solution of the 
above form is examined by first-order perturbation theory and also by direct integration of the per­
turbed field. Both methods indicate the existence of stable particlelike states, some of which have the 
further asset of a positive-definite energy density. 

1. INTRODUCTION 

In a previous paperl (hereafter referred to as I), the 
stability of the lowest-order (nodeless) solution of 
the form 

1jJ = rp(r)e-iwt
, w > 0, 

of the nonlinear field equation 

(1) 

(2) 

was examined. It was found that the solution was 
highly unstable for all choice of parameters K, fl, and 
w, that the lifetime/size ratio was essentially a constant 
independent of the field parameters, that the energy 
density was not positive definite,and that, as a direct 
consequence, a physically unacceptable (singular) 
decay mode was possible. In the present work, a 
generalization of (2) is considered which overcomes 
many of the above difficulties. For example, it is 
possible, by judicious choice of the field parameters, 
to have stable time-dependent particlelike solutions 
for which the energy density is positive definite. These 
particlelike solutions cannot possess absolute stability 
if sufficiently severe disturbances are allowed, but, 
when a decay is induced, it cannot take place by the 
singular mode. 

The particular generalization of (2) considered is 

2 1 CP1jJ 2 2 * * * V 1jJ - -;; -;--2 = K 1jJ - It 1jJ1jJ 1jJ + A1jJ1jJ 1jJ1jJ 1jJ, (3) 
c vt 

where A is a real, usually positive parameter. One can 
derive (2) from the Lagrangian density. We have 

1 1 01jJ 12 C = ~ at - IV1jJ1 2 
- K21V'12 + ilt2 11jJ1 4 

- iA 11jJ1 6
, 

(4) 

the corresponding energy density E being given by 

E = ~ 1 a1jJ 12+ IV1jJ1 2 + K21V'12 - ifl2 1V'1 4 
+!A /V'/6. 

c at 
(5) 

As in I, we shall restrict the analysis to spherically 
symmetric solutions of the form (I), when (3) can be 
reduced to 

d2rp' 2 drp' , ,3 ,5 - + - - = rp - rp + Brp , 
dr,2 r' dr' 

where q/, r', and B are given by 

(6) 

rp' = flrp(1 - W'2)-!, r' = Kr(l - W,2)+!, (7) 

B = AK2(1 - w,2)/l. (8) 

2. PARTICLELIKE SOLUTIONS OF (6) 

A. Phase Space Analysis 

In order to exploit the analogy with forces on 
macroscopic point particles and their equations of 
motion, we will write (6) in the form 

ji = d(ty2) = _ ~ y + y _ l + B/, 
dy t 

rp' -+ y, r' -+ t, (9) 

where the dot denotes differentiation with respect to 
time. Let us define a new equation from which the y 
term is absent, viz., 

ji = y - y3 + By 5. (10) 

This can be integrated to give 

ty2 + (-ty2 + b 4 - /rBy6) = E, (11) 

where E is a constant of integration. For a particle of 
unit mass, (10) represents motion under the conser­
vative force (y - y3 + By5). The energy of this 
motion can be expressed as E = T + V, where T, the 

945 



                                                                                                                                    

946 DAVID L. T. ANDERSON 

kinetic energy, is !y2, and V, the potential energy, is 
given by 

V = -b2 + ty4 - tBy 6. (12) 

The equilibrium points of the motion are given by 

(:;) = 0 = - y + y3 - Bl. (13) 

Equation (13) has solutions 

y = 0, y = ±AI , Y = ±A2 , 

where Al and A2 are given by 

A = (1 - (1 - 4B)!)! A = (1 + (1 - 4B)!)!. 
1 2B ,2 2B 

(14) 

The trajectories in phase space (y, y) of the motion 
defined by (10) are given by E = const. The motion 
we want to analyze is (9), for which 

dE = _2(y)2 

dt 
(15) 

Since this is always negative, it follows that the 
trajectories of particles obeying (9) always move to 
decreasing E. 

B. The Phase Trajectories 

The notation used in the phase analysis is as 
follows. The solutions of (9) sought in this work are 
those for which y = 0 at t = 0 and y -+ D(k)e-tjt as 
t -+ 00, where D(k) is a constant for any given solution 
and the index k denotes the number of nodes possessed 
by the solution. Let us denote the value of y at t = 0 
by ao. Particlelike solutions will occur only for 
certain discrete values of ao denoted A(k). For 
convenience, we consider starting from a trial point 
y = 0, y = ao at t = 0 and integrating forwards in 
time. Only for certain, if any, values of ao [i.e., 
A(k)] will the solution have an asymptotic exponential 

FIG. t. Phase space for B = O. The nodeless and one-node 
solutions (dashed lines) are shown. The solid curves are the phase 
trajectories of (10) E = cons!. The hatched area indicates the region 
of negative E while the dotted curves show the phase trajectories of 
particles obeying the equation of motion (9), but for which ao ~ 
A(k). These trajectories end up spiraling around ± I. 

( ) 

E= 10 

DirectIons 10f decreaSIng E 

I 

I 
I 

FIG. 2. Typical phase space for B in the range 0 < B < 1'\,-. 
The dotted curve indicates the nodeless solution to (9). As in Fig. I, 
Ifao ~ A(k), then t~e trajectory spirals around ±A1 • If ao > A"the 
dIrectIOn of decreaSIng E is away from the origin. 

form. Because different values of B give rise to 
different types of phase trajectories, it is convenient to 
split the analysis into four separate regions. 

i. B = 0 

In Fig. 1 we show the appropriate phase space 
diagram. The solid lines are the curves E = const and 
are therefore the trajectories of a particle obeying (10). 
We want the phase trajectory of a particle obeying (9), 
and these are given by (14), i.e., the trajectory always 
moves to decreasing E. The figure of eight lying round 
the origin is the curve E = O. Once a trajectory enters 
such a region, it cannot escape and must end up on the 
lowest point in the lobe which it enters, i.e., ± I. For 
certain values of y (when y = 0), there are trajectories 
which go to the origin. These values of yare A(k), 
k = 0, I, 2, .... The trajectories for the two lowest­
order solutions to (9) for B = 0 are marked on Fig. I. 
The trajectories of the higher-order solutions can be 
obtained by a simple extension of the above process. 

ii. B < 0 

The phase space for B negative is very similar to 
that for the B = 0 case except that Al < I. Otherwise, 
the analysis goes through as for the B = 0 case. (The 
above process would break down if the point P l at 
which the E = 0 trajectory cuts the line y = 0 were 
to lie nearer the origin than AI' However, it is easy to 
show that this cannot occur for any B.) 

iii. 0 < B < i'G 
When B is positive, A2 is real and finite, and thus 

one expects the phase space for this case to be involved. 
In Fig. 2 a typical pha,se space for 0 < B < -(s is 
drawn. Let us split up the analysis into three categories. 

(a) ao < PI: Then the trajectory lies wholly within 
the hatched region (E < .0) since the trajectory starts 
within the E < 0 region and can therefore not escape. 
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It will spiral around +A1 if ao is chosen positive. 

(b) ao > A 2: The direction of decreasing E is away 
from the origin, and such a trajectory can never cross 
the line y = A2 • Thus there are no particlelike solutions 
for any A(k) > A2 • This result is also proved in 
Appendix A. 

(c) PI < ao < A2 : All A(k) must lie between PI 
and A 2 • Some trajectories for values of ao in this range 
are shown in Fig. 2. The behavior is essentially the 
same as for the B < 0 and B = 0 cases, i.e., except 
for certain values of ao and A(k) the trajectories enter 
the hatched regions, from which they cannot escape, 
and end up spiraling around ±A1 • 

iv. B> /6 

The diagram of Fig. 2 is typical only of B in the 
range 0 < B < -{s. Let us define PI and P2 as the 
points at which the E = 0 trajectory cuts the line 
y = O. This gives 

(16) 

In Fig. 3 we draw AI, PI' A 2 , P2 as a function of B. 
From this graph it is clear that the order of points 
0, AI' PI' A2 , P2 is preserved up to B = -{s. For 
B> -{s, no real PI and P2 exist; a typical phase 
space for the case -{s < B < 1- is shown in Fig. 4. It 
is clear that for any ao < A 2 , we are starting within a 
region for which E is negative, and, because the 
trajectory always moves to decreasing E, the origin 
(at which E is zero) can never be reached. For ao > A2 , 

we move in a direction away from the origin to a 
region of negative E. 

Thus there are no values of ao for which particlelike 
solutions can exist. 

FIG. 3. PlotofAI,P"A •• 
and p. against B. For B> 
1'. no real PI or p. exist. At 
B = fl •. PI = A. = p •. 2 

FIG. 4. Typical 
phase space for 
,\- < B < -1. The 
whole axis y = 0, 
except the origin, 
lies in a region of 
negative E. 

Conclusion 

E = 0 

<-- '----> 
DIrectIOns of 

decreosing E 

From an analysis of (9) in the phase plane, it has 
been shown that particlelike solutions can exist for B 
in the range - 00 < B < 1\' but that such solutions 
cannot exist for B > -(s. When solutions do exist, the 
values of A(k) can be bounded: 

PI < A(k), for - 00 < B < 0, 

PI < A(k) < A2 , for 0 < B < -(s. 

When ao ¥= A(k), the trajectory oscillates about one 
of the special solutions ±A1 • 

C. Numerical Solutions 

Solutions to (9) were obtained numerically. A brief 
discussion of the methods used will be given elsewhere. 
In the following analysis the stability of the nodeless 
solution is discussed, and for this reason we plot only 
this solution in Fig. 5 for various B values. Note how 
strongly B controls the "size" of the solution. In 
Table I values of A(1) and D(J) are tabulated for some 
values of B. 

10 cp' 

8 =-0.2 

5 

8 = -0.1 8 =0.1 8 = 0.15 

oL---==~===~----'::;::::::::O:=~_----,_,,::::::==! 
4 0 

FIG. 5. Graph of the nodeless solution of (6) for various values of 
B. The larger the value of B, the more distended the solution. As 
B -+ 1-\' q/(r') -+ 2. 
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TABLE I. Table of numerically obtained values of A(O) and D(O) 
together with the values of A. for various B. Note how, as 
B - 1-., A(O) - A. --+ 2. For B> 0.1, A. gives a good upper 

B 

-0.1 
-0.04 

0.0 
0.05 
0.1 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 

bound to A(O). 

A(O) 

6.232 ± 0.002 
5.023 ± 0.001 
4.337 ± 0.001 
3.578 ± 0.001 
2.906 ± 0.001 
2.781 ± 0.001 
2.661 ± 0.001 

2.5456 ± 0.0005 
2.4358 ± 0.0003 
2.3325 ± 0.0001 

2.23606 ± 0.()()()()5 

00 

4.35 
2.98 
2.82 
2.68 
2.55 
2.437 
2.3327 
2.236068 

D(O) 

1.09 ± 0.01 
1.72 ± 0.01 
2.71 ± 0.01 
5.94 ± 0.04 
22.7 ± 0.2 
34.6 ± 0.3 
58.2 ± 0.5 

113.0 ± 1.0 
279.0 ± 3.0 

1040.0 ± 10.0 
8960.0 ± 20.0 

3. STABILITY BY FIRST-ORDER PERTURBATION 
THEORY 

The stability of the nodeless solution of (13) to 
small perturbations is considered for ° < B < 1\' 
Let us denote by "Po the undisturbed state, by "P the 
perturbed state, and by "PI = "P - "Po the perturbation, 
considered small at least initially. 

By keeping up to first order in "PI and "Pi in (13) 
and using the transformations (7) and (8), one can 
derive the eigenvalue problem (see I) 

(
V'2 + (0' + W')2 - 1 + 2 ,2 _ 3B ,4) 

(1 _ W,2) CPo CPo 'Y) 

= ( _ cp~2 + 2Bcp~4)x, 

(
V,2 + (0' - W')2 - 1 + 2 ,2 _ 3B '4) 

(1 _ W,2) CPo CPo X 

= (_ cp~2 + 2Bcp~4)'Y), (17) 

where "PI has been expressed in the form 

"PI = ('Y)e-iClt + x*e+m*t)e-iwt 

8 = 0'05 

B = 0'075 

, __ B_= 0'15375 

and 0' = O/Ke = 0; + iO;. The problem of deter­
mining the stability of "Po has been reduced to finding 
the eigenvalues 0; and O~ of (17) as a function of w' 
for given B. 

In the B = ° case, nontrivial solutions to (17) were 
found only for 'Y) and X spherically symmetric, when 
0' was purely imaginary. In the present case a more 
complicated situation exists. Provided that ° < B < 
-Ps, there exists a critical value of w', denoted w~(B), 
at which the nature of the eigenvalue 0' changes. The 
eigenvalues of (17) are then of the form 

(i) 0; = 0, 0; ~ 0, ° < w' < w~, 
(ii) 0; ~ 0, 0; = 0, w; < w' < 1. (18) 

No solutions for which 0; and 0; were simultaneously 
nonzero were found. These results, and the results 
obtained in I, suggest that 0'2 should be real for this 
type of eigenvalue problem, but the author has been 
unable to prove this. 

In Fig. 6(a), 0; is plotted against 0' for the values of 
B = 0.05, 0.075, 0.1, and 0.15375 while, in Fig. 6(b), 
0; is plotted against w' for the same B values. 

4. STABILITY BY DIRECT PERTURBATION 
METHODS 

A. Introduction 

The approach resembles that used in I. By defining 
p = kr and T = kef, one can reduce (3) to 

a2 

V!'P' - aT~ = 'P' - 'P''P'*'P' + B('P''P'*)2'P', (19) 

where 

B = AK2/ft4 = B/(1 - W,2), 

'P' = ft"P!K = (1 - w'2)!cp~e-iW·T. (20) 

As before, cP~ is the nodeless solution of (6). It is now 
obvious that B is the important parameter with 

(b) 0·05 

8=0·15375 

0.2 0·4 0·6 W' 0 0·5 

FIG. 6. Plot of eigenvalues n;. and n; against w' for fixed B as obtained by numerical solution of (I7). Note the existence of a critical 
value of w' for each positive B and that the nature of the solution changes from the form (n;. = 0, n; ;;o!: 0) to (n~ ;;o!: 0, n; = 0) 
at this point. 
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regard to stabilitr- To !olve (19), on.e must ch.oos~ a 
value of w' and B. If B > 1

3
6' there IS no parttclehke 

solution to (19) of the form (I) unless Wi is chosen 
greater than wI. = (1 - 13sB)! since particlelike 
solutions exist only for B < 1

3
S' 

Before considering the stability of solutions by 
direct perturbation, it is worthwhile examining the 
energy density. Equation (5) can be written in trans­
formed notation as 

4 

S = ~S' 
p.2 

= ;:(/ ~~ 12+ IVp'¥12 + 1'¥12 - t 1'¥14 + iB11I1'/6). 

(21) 

Then S will be positive definite provided B> 136' 

which implies that a state with positive-definite energy 
density can occur only if the particlelike solution is 
time dependent. In Fig. 7, B is plotted against w' 
along curves of constant B and the regions of (i) no 
particlelike solutions, (ii) particlelike solutions with 
positive-definite energy density, and (iii) particleJike 
solutions for which the energy density need not be 
positive definite are marked. One can also incorporate 
the results of Sec. 3 by marking on the curve of 
critical w~ as a function of Band w'. This shows that 
the results of first-order perturbation theory imply the 
existence of (a) stable solutions for which E is positive 
definite, (b) stable solutions for which S need not be 
positive definite, and (c) unstable solutions. The 
curve of w~ is not plotted in the region w' --+ I because 
of the numerical inaccuracy in obtaining the value of 
11 corresponding to a pair of values (w~, B) in this 
region. [The error in 11 denoted /).11 = 2Bw~/).w~1 
(1 - W~2) can be large for even a small error (/).w~) in 
w~ when w' --+ 1.] 

Ii a '~/161 Sl I 

I / 
I (1) / 

I ~(11) ~ 
k----,--"-·-- B ~'/16 
L ---~ (iv) w' o ---'--------1 

FIG. 7. Graph of ii vs w' showing how the space splits into four 
regions: (i) region of no particlelike solutions (B > -f-,,), (ji) region 
where the energy density is positive definite, (iii) region of stable 
solutions with f; not positive definite, and (iv) region of unstable 
particlelike solutions. 

10 

2 

FIG. 8. Time development of the state 0/ for the point S after it 
has been forced to oscillate at an unnatural frequency. The state 
oscillates with an angular frequency of ,...., 1.6 radians!,-unit and 
radiates some "excess energy." 

We will test the conclusions (a), (b), and (c) of 
first-order perturbation theory by examining the 
stability of typical points S, R, and U in the three 
regions (see Fig. 7). It will be shown that Sand Rare 
very stable, but that U is highly unstable. 

B. Direct Perturbation Results 

For an unstable particle, a convenient method of 
illustrating graphically the time development of the 
particle state, when disturbed, is to plot the energy 
density against the reduced radial distance p for a 
series of reduced times T (see I). For a stable particle 
this is unsatisfactory, and one must adopt an alter­
native method. Let us define £(a) by 

£(a) = fs dv. (22) 

Let us consider the consequences of applying various 
disturbances to S (11 = 12, w' = 0.8). Figure 8 shows 
the results of trying to force the particle to oscillate at 
an unnatural frequency. The initial disturbed state is 
defined by 

'¥]r=o = 0.6<p~, ~~J = -0.3i<p~, (23) 

where <p~ is the nodeless solution of (6) corresponding 
to S (i.e., B = 0.1, w' = 0.'8). Plotted in Fig. 8 is 
£(a) for the values of a = 2, 4, 6, and on all three 
levels oscillations with an angular frequency of ,....., 1.6 
radians T~unjt can be seen. In Table II the values of 
£(a) for various a for the undisturbed state S are 
given for comparison. Although £( (0) is not plotted 
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TABLE II. Values of E(a) for a = 2, 4, 6, 8, 10 for the un­
disturbed state S. 

a 2 4 6 8 10 

E(a) 6 29.9 37.4 38.1 38.2 

in Fig. 8, it is only marginally larger than £(6) since 
all the energy is effectively contained within a sphere 
of radius p = 6. Comparison of £( (0) for the dis­
turbed and undisturbed states shows that, although 
the energy of the perturbed state is less than that of 
the undisturbed state, there is no decay. Some energy 
is radiated as can be seen from the fall of £(6), but 
this curve quickly levels out. That stable perturbed 
states of lower energy than the initial state can exist is 

10 

6 

2 

100 

FIG. 9 

60 -----,---- - - - ---1 T ~---l--'-----

8 10 

~--------------- 6 

30 r~ 4 

2 

OL-~ __ -L ___ ~ __ L-~ __ -L __ ~ __ ~~L--J 

o 50 100 

FIG. II 

an undesirable feature of this field, resulting from the 
fact that there exists a continuous range of solutions 
for any fl. 

Figures 9-12 show how the particle responds to 
disturbances initiating outside the particle radius. For 
the case shown in Fig. 9, the energy of the disturbance 
is as large as that of the unperturbed state. Such a 
disturbance cannot be considered small in any sense; 
yet a decay is not induced. Instead, the particle 
breaks into oscillation and radiates some excess 
energy. The disturbance applied in this case can be 
given by 

I 00/1/ 0/1 T=O = ~1(4), aT T=O= -3~1(4), 

where ~1(4) is as defined in Appendix B. 

0 -~ 
0 

"I 
30 

o L----'--_--L-.-----' 

o 

50 

FIG. 10 

50 

FIG. 12 

20 

6 

8 10 

6 

2 

(24) 

100 

180 

FIGs. 9-12. Plots of E(a) vs T for S for various applied disturbances. 
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In Figs. 11 and 12 the applied disturbance can be 
seen moving in on the particle center and also, though 
less clearly, can be seen propagating outwards after 
exciting the particle. 

The graphs in Figs. 8-12 inclusive are all for rather 
large disturbances. One might ask what happens when 
small random disturbances are applied (e.g., similar 
to those applied in I). In this case the particle does not 
decay, but the perturbed levels E(a) remain so close 
to the unperturbed levels (which are simply straight 
lines parallel to the T axis) that they do not illustrate 
any new interesting behavior. In order to produce a 
development noticeably different from the unper­
turbed state, one must apply a moderate to severe 
disturbance. 

Examination of the stability of the point R (B = -fs, 
w' = 0.8) leads one to the conclusion that it is also a 
very stable state, exhibiting behavior similar to S, but 
that this time the energy density need not be positive 
definite. The fact that during the time evolution the 
energy density might become negative in some region 
of space for some disturbances does not seem to render 
R less stable than a state such as S for which t; can 
never be negative anywhere. 

Although Sand R are, as suggested by first-order 
perturbation theory, found by direct perturbation 
methods to be extremely stable, no state can be 
unconditionally stable. Figure 13 shows E(a) vs T, a = 
2, 4, 6, 8, 10, for a disturbance which induced a 
dissipative decay in S. 

The point U (B = 0.1, w' = 0.2) is, as expected, 
extremely unstable, decaying at the slightest provo­
cation. In Fig. 14 we illustrate a new type of decay 

40 

100 

FIG. 13. Example of a dissipative mode of decay for S. £(a) is 
plotted against T for the values of a = 2, 4, 6, 8, 10. 

8,1 

8 

't' = 5 

e 8 

FIG. 14. Graph of the reduced energy density fi' against the 
reduced radial distance p at a series of reduced times T for the point 
U. Notice how fi' tends to assume the constant value ("'" -7.2) 
over an increasingly large volume of space. 

exhibited by U. In this case, t; tends to a constant 
value over an increasingly large area of space. Energy 
conservation requires that the positive bump increase 
in magnitude to compensate for the increase in 
negative energy as for the singular decay of I, but it 
must travel outwards in this case. 

C. Summary 

The results of first-order perturbation theory are 
confirmed by direct perturbation techniques. The 
stability of points, for which t; must be positive 
definite (S) and for which it need not be (R, U), is 
considered. From Sec. 3, it is suggested that Sand R 
are stable, but that U is unstable. Direct perturbation 
methods confirm this. It is found that Sand R exhibit 
very much the same behavior: that both are extremely 
stable and that both tend to break into oscillation and 
radiate some excess energy when excited, and that 
both can be destroyed. 

5. CONCLUSION 

Stable time-dependent particlelike solutions are 
found to exist to the field equation (3), for suitable 
choice of the field parameters K, fl, A, and w. One can 
have the further refinement that the energy density of 
the particle is positive definite if AK2 / fl4 > /6 while 
A(K2 - w 2/C2)/fl4 < -{s. We would like to be able to 
consider an elementary particle as being represented 
by a local concentration of the energy density and thus 
intuitively feel that the energy density ought to be 
positive definite. This has the advantage of eliminating 
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'P 
" 

\ 0.5 

s)ries 
Solution 

\ 

'~-
" FIG. J 5. Shape of a nodeless solution to (6) for 00 > A. showing 

the series solution for r' ~ 0, the exponential decay for r' -+ 00, and 
the necessity for a maximum at some finite value of r'. 

the unphysical decay modes which can occur if E can 
be negative. However, although the field here con­
sidered is a considerable improvement over that 
discussed in I, it cannot be considered as a sensible one 
for an elementary particle. For example, the results 
imply the existence of stable spinless massive particles, 
and no such particles have been observed to date. 
Further, the problem of assigning values to the field 
parameters is no nearer solution here than it was in I. 
Nevertheless, the results encourage further investi­
gation of such fields. The onset of stability as a 
function of w has not been considered in this paper, 
but there is an observed correlation between the 
critical value of Wi and the extrema of the total 
integrated energy. It is hoped that this may be the 
subject of a later work. 
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APPENDIX A: PROOF THAT THERE CAN BE NO 
PARTICLELIKE SOLUTIONS TO (6) IF ao > Az 

For small r', Eq. (6) has the series solution 

cp' = ao + a2r'2 + a4r'4 + ... , (AI) 

where a2 = lao(1 - a~ + Ba~) will be positive if ao > 
A z• 

Thus, for ao > A2 , cp' is an increasing function in 
the neighborhood of the origin. The asymptotic form 
of a particlelike solution to (9) for large r' is cp' ~ 
De-r ' / r'. Any particlelike solution must be a combI­
nation of these two forms. For the sake of example, let 

e 
FIG. 16. Plot of the function !(p) against p. 

us consider a nodeless solution. Then it must be of the 
form shown in Fig. IS. Since cp' increases in the 
n' h' d of the origin, cp' must have a maximum. The 
condition for a maximum is dcp' jdr' = 0, d2cp' jdr'2 < O. 
When dcp' jdr' = 0, Eq. (6) has the form 

d2 , 

~ - ' _ 13 + B ,5 (A2) dr'2 - cp cp cp . 

But because cp' must be greater than A2 at this point, 
the right-hand side of (A2) is positive, implying that 
(6) cannot have a maximum if cp' > A2 , which in turn 
implies that (6) can have no nodeless particlelike 
solutions if ao > A2 • The nonexistence of the higher­
node solutions follows as a simple extension of this 
argument. This argument holds for any B in the range 
0< B < t. 

Corollary: There can be no particlelike solution to 
(6) for any ao if B > t. If B > t, the coefficient a2 is 
positive for any positive ao, and so is the rhs of (A2). 
Thus it is not possible to have particlelike solutions 
for any ao in this case. 

APPENDIX B: DEFINITION OF ~1(b) 

When we were applying disturbances to 'Yo, it was 
convenient to have in the computer a series of basic 
disturbances from which other disturbances could be 
constructed. Such a disturbance is '1' 

By '1(b) is meant 

'1 = 0, P < b, '1 = !(p - b), p ~ b, 

where !(p) is shown graphically in Fig. 16. 

* Present address: Commonwealth Meteorology Research Centre, 
P.O. Box 5089AA, Melbourne, Australia. 

1 D. L. T. Anderson and G. H. Derrick, J. Math. Phys. 11, 1336 
(1970). 
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0(2, 1) and the Harmonic Oscillator Radial Function* 
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The radial functions of the three-dimensional isotropic harmonic oscillator are shown to form bases 
for unitary representations of the noncompact group 0(2, I). The functions r' are shown to transform 
simply under the action of the generators of this group. As a result, matrix elements of r' can easily be 
evaluated. Selection rules on these matrix elements are obtained by studying Kronecker products of 
representations of 0(2, 1). 

I. INTRODUCTION 

In a previous paper,l we analyzed the radial 
wavefunctions of hydrogen using the noncompact 
group 0(2, 1). In this paper, we wish to carry out a 
like analysis of the radial wavefunctions of the har­
monic oscillator. 

The eigenvalue equation for a particle moving in a 
harmonic oscillator potential can, of course, be solved 
exactly. For that reason, this potential is used in 
many problems in physics and chemistry to approxi­
mate potentials whose exact form is not known, or is 
too complicated to treat conveniently.2 As a result, 
the harmonic oscillator has been studied using a 
variety of techniques.2- 5 

One of the techniques which has been used for these 
studies is, of course, group theory. That the radial 
functions of the harmonic oscillator form bases for 
representation of 0(2, 1) has been known for several 
years.4 It appears, however, that this symmetry has 
not been exploited in the evaluation of matrix ele­
ments.s In this paper, we utilize the group properties 
of these functions in order to evaluate matrix elements 
of r' (s a positive or negative integer). In the process, 
we obtain a number of interesting selection rules for 
matrix elements on r8. These rules are analogous to 
those obtained by Pasternack and Sternheimer 6 for 
the hydrogen atom. 

II. THE ALGEBRA AND ITS 
REPRESENTATIONS 

The complexification of the algebra of 0(2, 1) is 
composed of three operators, J+, J_, and Ja, which 
satisfy the commutation relations 

[Ja,J±] = ±J±, 
[J+,L] = 2J3 • (1) 

A basis for an irreducible representation 
algebra is formed by the states!ab: 

of this 

where 

1. = [(I + t)]f ei (n+f)tI2z tR (z) 
ab fJi nl , 

47T 

a = Hl- t), 
b = Hn + i), 

(3) 

and Rnl({3r2)/r is the radial wavefunction for the 
three-dimensional isotropic harmonic oscillator: 

Rnl(fJr2) = [(in - tl - W 2fJf]f(fJr2)f(l+1)e-pr2/2. 
rein + tl + l)a 

X L!~!-!_1)(fJr2). (4) 

In Eqs. (3) and (4), fJ = mw/Ii, where W/27T is the 
classical frequency of oscillation and L~ is the 
Laguerre polynomial of Morse and Feshbach.8 

The action of the operators given by Eqs. (2) on the 
states lab is described by the equations 

Jalab = blab, 

JJab = ± [(b =f a)(b ± a ± l)]o/:.b±l' (5) 

The Casimir operator for this algebra, denoted by J2, 
can also be easily investigated. One finds 

J
2
fab = (J+J_ + J3

2 
- Ja)fab = a(a + l)fab' 

By using Eqs. (2), (4), and setting z = fJr 2, this 
equation can be written in the familiar form 

[~ _ m
2
w

2 
2 2mw 1 ] _ 1(1 + 1) 

dr2 1i2 r + Ii (n + 2) Rn! - r2 R n !· 

The second of Eqs. (5) indicates that 

J-laaH = 0, 

A realization of these generators 
sional (z, t) space is given bt 

in a two-dimen- thus providing a lower bound to the basis. Clearly, 

=e z-=f/-=f-J it( 0 . 0 Z) 
± oz ot 2' 

however, J+lab ¥- ° for b > a; there is, therefore, no 
upper bound to the representation, i.e., the representa­
tion is infinite dimensional. It is also clearly irreducible. 
Further, the eigenvalues of the operators J+J_ and 

(2) Jj+ are real and negative definite. This condition, in 
conjunction with the reality of a and b, implies that 

953 
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the representation formed by the states lab (b > a) is 
unitary.9 This representation is, of course, just the 
positive discreet representation10 ~~. 

The states lab can be used to form the basis for a 
Hilbert space9.10; we define the scalar product in this 
space by 

Ua'b' / Jab) = jJ:'b.Jab dQ, (6) 

where dQ = dl dz/z2• Using this definition, we find 

and 

(Ia'b' /lab) = o(a, a')o(b, b'), (7) 

(Ia'b' I J3 I lab) = (J31a'b' /lab)' 

(Ia'b' I J± I lab) = -(J'fla'b' I lab)' 

III. OPERATORS AND MATRIX ELEMENTS 

The purpose of the present section is to utilize the 
algebra of the previous section in the calculation of 
matrix elements of Zk. To facilitate the calculation, we 
introduce the operators 

T(k)q = Z-keiqt, 2k ~ 0, (8) 

p(k)q = Zk+Vql, 2k ~ -1, (9) 

where 2k is an integer and 2q is a positive or 
negative integer. The transformation properties of 

these operators with respect to the operations of the 
group is determined by their commutators with respect 
to the algebra: 

[J±, T(k)q] = -(k 1= q)T(k~±1' 

[J T(k)] = qT(k) 
3, q q' 

[J±, p(k)q] = (k ± q + I)P(k)q±1' (10) 

[J p(k)] = qp(k) 
3, qq' 

In order to determine the dependence of the matrix 
element (Ia'b' I T(k)q llab) on the "magnetic" quantum 
numbers b, b', and q, we evaluate matrix elements of 
the first of the Eqs. (10), and use Eq. (5): 

[(b' ± a')(b' 1= a' 1= 1)]tUa'b''f11 T(k)q IJab) 

where 

- [(b 1= a)(b ± a ± 1)]tUa'b·1 T(k)q IJab±1) 

= -(k 1= q)Ua'b,1 T(k)q±1 IJab), 

a' = HI' - t), 
b' = Hn' + t). 

The top signs in the above equation result from taking 
the commutator of T(k)q with J+, the lower, from the 
commutator with J _. Repeatedly using the relation­
ship resulting from the commutator with J+, we 
obtain 

( f, ,I T(k) If) = (I'(2a + 2)I'(a' + b' + 1)(b' - a' - I)! (b - a - 1)!)t 
Ja b q Jab I'(a + b + 1) 

X t (b - a-I - t)!-1 [r(q + a + a' + t + 2)(a - a' + q + t)!]-!(k ~ q)Ua'Ht+a+11 T(k)Ht IJaa+1)' 

In a like manner, repeated use of the relationship resulting from the commutator of T(k)q with J _ leads to the 
result 

" T(k) = (r(2a' + 2)(b' - a' -1)!)!( k + q )(f" I T(k) , If . 
Ua b I q IJaa+l) rea' + b' + 1) b' _ a' _ 1 Ja a +1 a -a Jaa+1) 

Combining these two results, we find that we can write 

Ua'b' I T(k)q IJab) = A(kq, ab I a'b')Ua'a,+d T(k)a'_a IJaa+l), 

where the coefficient A (kq, ab I a'b') is defined as 

A(k ab I a'b') = (r(2a + 2)r(2a' + 2)r(a' + b' + l)(b' - a' - I)! (b - a - l)!)i 
q, rea + b + 1) 

(11) 

X 2 (_l)Ha-a'+t[(b - a-I - t)! rea + a' + q + t + 2)]-I(a - a' - k,- l)(k - q). 
t q+a-a +1 1 

(12) 
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In the above equations, the binomial coefficients are 
defined as 

(n) r(n + 1) 
r = rCn - r + l)r! 

if 2n is an odd integer, 

( nr) = n! 
(n-r)!r! 

if 2n is an even integer ~ 0, 

(
nr) = (-l),Cr - n - I)! 

(-n - I)! r! 
if 2n is an even integer ~ 0. 

(13) 

Further, the factorial of a negative number is not 
defined, and any term in Eq. (12) involving such a 
negative factorial in either the numerator or denomina­
tor should be set equal to zero. 

Matrix elements of the operators p(k) q can be studied 
using the same techniques. In this case, one finds 

Ua'b,1 p(k)q Ifal,) = A(-k - 1 q, ab I a'b') 

X Ua'a,+!1 p(k)a'_a Ifw+l), (14) 

where A(-k - 1 q, ab I a'b') is obtained by sub­
stituting -k - 1 for kin Eq. (12). 

Finally, to complete the calculation, one must 
obtain the matrix elements on the right-hand sides 
of Eqs. (11) and (14). This is easily done by recalling 
that8 L~ = res + I) and using Eqs. (3), (4), (6), (8) 
and (9): 

(k) na + a' - k + 1) 
U;"a'+ll T a'-a Ifaa+!) = . i' 

[[,(2a + 1)1'(2a' + 1)] 

(k) rea + a' + k + 2) 
Ua'a'+ll p a'-a Ifaa+!) = ~ . 

[r(2a + l)r(2a' + 1)]. 
(15) 

IV. SELECTION RULES 

In the previous section, we used properties of the 
algebra to obtain matrix elements of the operators 
pUc) and l(k), In this section, we shall obtain selection 
rules for these matrix elements by considering 
Kronecker products of representations of 0(2, I). 

In order to carry out such a study, it is convenient 
to define states which satisfy the relations 

J±tkq = -(k =f q)t/cq±1, 

J 3tkq = qtkq , 

J±hq = (k ± q + I)Pkq±1' 

J3PkQ = qPkq . 

(16) 

The transformation properties of the states produced 
by the action of the operator T(k) q on the state lab are 
the same as the transformation properties of the states 

formed by the product tkqlab' We can now utilize the 
well-known result that the matrix element 

Ua'b,1 T(k~ Ifab) 

vanishes identically unless ~~, is contained at least 
once in the decomposition of the Kronecker product 
~(k) X ~~, where ~(k) is a representation which 
has as basis the states tkq . Corresponding relationships 
hold, of course, between the properties of the opera­
tors p(k)q and the states Pkq' 

We must now determine the representations whose 
bases are formed by the states of Eqs. (16). We 
consider first the case in which either both 2k and 2q 
are even integers, or they are both odd integers. 
Clearly, in this case, the states tkq form a representa­
tion which is not fully reducible. However, an irreduc­
ible representation can be formed in the subspace 
with Iql ~ k. This finite-dimensional irreducible 
representation must be nonunitary because 0(2, 1) 
has no finite-dimensional unitary representation 
(except the trivial one-dimensional identity repre­
sentation). 9 We denote this irreducible representation 
as 1) (k). The Kronecker product l)(k) X 1)~ has 
previously been studiedl ; the results can be stated by 
the decomposition 

k+a 
~(k) X 1)~ = ! 1);' + other. (17) 

(a'~lk-al) 

Here, "other" refers to representations for which 
a' < Ik - al; such representations are of no real 
interest here since matrix elements (la'b,1 T(k) q llab)' 
where a' < Ik - ai, are always equal to infinity. For 
our purposes, then, if Iql = Ib - b'l ~ k, matrix 
elements of T(k) must vanish when la - al > k. 

Considering still only the case in which both 2k and 
2q are either even or odd integers, one finds that the 
states Pkq also form a representation which is not fully 
reducible. In this case, two irreducible representations 
can be formed by considering specific subspaces only. 
In particular, the states hq with q ~ k + 1 form a 
basis for the representation l)t, and the states with 
-q ~ k + 1 form a basis for the representation 1)/;, 

the negative discrete representation.lo Both of these 
representations are unitary and irreducible. The 
Clebsch-Gordan series for l)t X 1)~ and 1)/; X 1)~ 
have been studied by several authors.11.l2 Their results 
can be summarized as follows: 

00 

l)t X 1)~ = ! 1): , 
a'=a+k+l 
a-k-l 

~k X ~! = ! ~: +~, a > k, 
a'=O 

k-a-l 
= I ~;;; + 1), a < k, 

a'=O 
(18) 
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where ~ signifies continuous representations.9•1o• The 
exact specification of the continuous representations of 
no interest to us, since we are interested only in repres­
entations of ~t, which appear on the right-hand side 
of Eq. (18). From this equation, then, we obtain the 
result that when q = b' - b ~ k + 1, matrix elements 
of P(k) vanish if a' < a + k + 1; when -q = b - b' ~ 
k + 1, matrix elements of p(k) vanish if a' > a - k - 1. 

Finally, if we consider the case in which 2k is an 

f R n'I'R nzr
s 

dr 

even (odd) integer, and 2q is an odd (even) integer, we 
find that no irreducible unitary representations are 
formed by the states tkq or hq. Correspondingly, there 
are no selection rules present in this case. 

V. DISCUSSION 

We can collect the results of the previous sections 
in order to write out explicitly values of the desired 
matrix elements: 

= P-S/2(_li(n-n'+I'-llrf!(1 + I' + s + 3)](r[Hn' + I') + 1][t(n - 1- I)]! [ten' - I' - I)]!)! 
r[Hn + I) + 1] 

( -1)t 2 n - n - s - 2 

( 

s + 1 - I' ) , 

X f [Hn - / - I) - t]! r[w + l' + 1 + n' - n) + t + 1] n' - n ; / - /' + t ( ; ). 

valid for all integers. Selection rules obtained from the 
use of group theory indicate that this integral must be 
set equal to zero when In - n'l and s are either both 
even integers or both odd integers and 

if s + 2 > 0, n' - n ~ s + 2 > l' - I 

or n - n' ~ s + 2 > I - I' 

or, if s + 2 ~ 0, In - n'l ~ -s - 2 < II - /'I. 
The reason that these selection rules are not explicitly 
contained in Eq. (19) is easily understood. When 
algebraic techniques such as those of Sec. III are used 
to determine the coefficient A(kq, ab I a'b'), selection 
rules appear only when some normalization condition 
is applied to A(kq, ab I a'b').1.ll We have, of course, 
made no attempt to carry out such a normalization. 

In a previous paper ,1 we noted that matrix elements 
of rS evaluated with hydrogenic radial functions are 
proportional to the Clebsch-Gordan coefficients for 
0(3). The same type of proportionality exists for the 
matrix elements discussed in this paper. Consider a 
Clebsch-Gordan coefficient of 0(3) having one of the 
angular momenta and its corresponding magnetic 
quantum number fixed at some explicit numerical 
value, with all of the other parameters left unspecified. 
Such a coefficient can generally be written as a simple 
algebraic function of the unspecified parameters. For 
examples of such functions, see Edmonds.13 We call 
these "algebraic" Clebsch-Gordan coefficients. One 
can, of course, carry out the same procedure for a 
Clebsch-Gordan coefficient of 0(2, I). One finds, 

(19) 

after writing out the algebraic coefficients for both 
groups, that they are identical to within a phase. l The 
function A(kq, ab I a'b') is clearly equal to a Clebsch­
Gordan coefficient of 0(2, 1) to within a phase 
and a factor depending only on k, a, and a'; thus 
A(kq, ab I a'b') must have the same dependence in q, 
b, and b' as does (kq, ab I a'b')alg, the algebraic form 
of the Clebsch-Gordan coefficient of 0(3). Then, for 
example, using Eqs. (5), (8), (9), and (14), we find 

f Rn'I,Rnlr" dr "-' A( -is - 1 b' - b, ab I a'b') 

"-' (s/2 b' - b, ab I a' b')alg (20) 

for s > 0. In arriving at the second line of (20), we 
have used the well-known invariance of the Clebsch­
Gordan coefficient of 0(3) under the interchange 
k -+ - k - 1. That this proportionality is correct is 
easily seen by using the tables of Shaffer3 for the radial 
integral above and the tables of Edmonds13 for the 
algebraic Clebsch-Gordan coefficient. For example, 
from Shaffer3 we have 

f Rn_ll+lRnlr3 dr "-' (in + tl + t)[(n - I - 1)/2]!, 

while from Edmonds we find 

(t t, ab I a + t b - t)alg N (a + 3b)(b - a - I)! 

= (in + tl + t)[(n - I - 1)/2]!. 

Proportionalities such as (20) also exist, of course, 
for s < O. 
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In many cases the quantum mechanical sum rules S(k), as k ranges over all real values such that S(k) 
is convergent, form a particular example from a class of functions called sum rule functions. If a set of 
up to five values taken by a sum rule function is given, then, by the use of another class of functions 
called N-sum rule functions, it is shown how one can impose the very best possible bounds on the sum 
rule function for arbitrary k, on the basis of the given information. In particular, these results apply to 
quantum mechanical sum rules. 

INTRODUCTION 

Many physical properties of an atom or molecule 
can be expressed in terms of the summations, known 
as sum rules: 

where Vqj is an oscillator strength corresponding to a 
transition from state q to state j, €qj being the corre­
sponding energy shift. If all the Vqj are positive for a 
particular q, for example q = 0, then such a family of 
summations [as k ranges over all real values such that 
S(k) is convergent] is a particular example of a sum 
rule function. More generally, when the first N of the 
Vqj ,for a fixed q are negative, as would occur, for 
example, in the case of dipole oscillator strengths with 
q > 0, then S(k) takes the form of a sum rule function 
minus an N-sum rule function. Thus, there is an imme­
diate interest in the nature of sum rule functions and of 
N-sum rule functions. This is discussed in this paper. 

For atoms, the dipole oscillator strengths have been 
especially studied and it is usually possible to calculate 
or measure various of the corresponding S(k)'s 

directly.l For example, the Reiche-Thomas-Kuhn 
sum rule gives S(O) = number of electrons of the 
atom (using atomic units). This motivates the current 
interest in the problem of bounding sum rules in terms 
of other sum rules and in the problem of interpolation 
between sum rules. Dalgarno and Kingston2 have 
found that for the ground state (q = 0) the S(k)'s can 
be approximated by the expression 

SO(k) = n[€lO + a(2· 5 - k)-l + b(2' 5 - k)-2]k, 

providing the Vqj are dipole oscillator strengths. 
Here n is the number of electrons in the atom or 
molecule, "1" is the first excited state with non­
vanishing oscillator strength, and the constants a and 
b are adjusted to make this equation correct for two 
selected values of k (usually k = -1 and k = -2). 
However, it must be stressed that this is only an 
approximate expression, with no bounding properties. 
In this paper we show how the problem of sum rule 
interpolation can be approached in such a way that 
the very best possible bounds to all (quantum me­
chanical) sum rules (based on any given set of sum 
rules) are obtained. For a large class of given sets 



                                                                                                                                    

0(2,1) AND THE HARMONIC OSCILLATOR RADIAL FUNCTION 957 

ACKNOWLEDGMENTS 

Much of this work was done during the summer of 
1970 while I was visiting the Laboratoire Aime Cotton, 
Orsay. I would like to thank Prof. Jacquinot and 
Dr. S. Feneuille for their hospitality during this 
period. 

• Supported in part by the U.S. Atomic Energy Commission. 
1 L. Armstrong, Jr., J. Phys. 31, C4 (1970). 
2 M. Moshinsky, Harmonic Oscillator in Modern Physics: From 

Atoms to Quark (Gordon & Breach, New York, 1969). 
3 W. H. Shaffer, Rev. Mod. Phys. 16, 245 (1944); s. Bell, J. Phys. 

B3, 735, 745 (1970). 
4 S. Goshen and H. L. Lipkin, Ann. Phys. (N.Y.) 6, 301 (1959); 

H. Bacry and J. L. Richard, J. Math. Phys. 8, 2231 (1967). 

JOURNAL OF MATHEMATICAL PHYSICS 

• J. D. Louck and W. H. Shaffer, J. Mol. Spectry. 4, 285 (1960); 
J. D. Louck, ibid. 298, 334 (1960). These authors have also 
used an algebraic technique -similar to that of Sec. III to study 
the harmonic oscilIator. However, their operators are unrelated to 
those discussed in this paper. 

S S. Pasternack and R. M. Sternheimer, J. Math. Phys. 3, 1280 
(1962). 

7 W. Miller, Lie Theory and Special Functions (Academic, New 
York, 1968), has discussed an algebra closely related to the one 
discussed in this paper. 

8 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hili, New York, 1953), Vols. I and II. 

• A. O. Barut and C. Fronsdal, Proc. Roy. Soc. A287, 532 (1965). 
10 V. Bargmann, Ann. Math. 48,568 (1947). 
11 W. J. Holman, III and L. C. Biedenharn, Jr., Ann. Phys. 

(N.Y.) 39, I (1960); 47, 205 (1968). 
12 K-H Wang, J. Math. Phys. 11, 2077 (1970). 
13 A. R. Edmonds, Anguldr Momentum in Quantum Mechanics 

(Princeton U.P., Princeton, N.J., 1957). 

VOLUME 12, NUMBER 6 JUNE 1971 

Sum Rule Functions* 

MICHAEL BARNSLEY 
Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin 

(Received 18 August 1970) 

In many cases the quantum mechanical sum rules S(k), as k ranges over all real values such that S(k) 
is convergent, form a particular example from a class of functions called sum rule functions. If a set of 
up to five values taken by a sum rule function is given, then, by the use of another class of functions 
called N-sum rule functions, it is shown how one can impose the very best possible bounds on the sum 
rule function for arbitrary k, on the basis of the given information. In particular, these results apply to 
quantum mechanical sum rules. 

INTRODUCTION 

Many physical properties of an atom or molecule 
can be expressed in terms of the summations, known 
as sum rules: 

where Vqj is an oscillator strength corresponding to a 
transition from state q to state j, €qj being the corre­
sponding energy shift. If all the Vqj are positive for a 
particular q, for example q = 0, then such a family of 
summations [as k ranges over all real values such that 
S(k) is convergent] is a particular example of a sum 
rule function. More generally, when the first N of the 
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molecule, "1" is the first excited state with non­
vanishing oscillator strength, and the constants a and 
b are adjusted to make this equation correct for two 
selected values of k (usually k = -1 and k = -2). 
However, it must be stressed that this is only an 
approximate expression, with no bounding properties. 
In this paper we show how the problem of sum rule 
interpolation can be approached in such a way that 
the very best possible bounds to all (quantum me­
chanical) sum rules (based on any given set of sum 
rules) are obtained. For a large class of given sets 
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of sum rules, we present an explicit construction 
for the appropriate interpolation functions. 

The rigorous upper and lower bounds to sum rules 
that we can obtain may often be remarkably close; 
they also have applications. For example, Pack3 has 
given a simple formula for an upper bound to the van 
der Waals force constant in the interaction between 
any two atoms in terms of the noninteger dipole sum 
rules S( - I .5). Without concern for units, his formula 
is Cab::; !Sa( -1.5)Sb( -1.5). Using rigorous upper 
bounds to the S( -1.5)'s, we can obtain simple 
rigorous upper bounds to Cab. This formula was also 
derived independently by Kramer. 4 Again, the 
Hylleraas variational principle has been applied by 
Davison5 to yield lower bounds to the van der Waals 
force constants in terms of sum rules. Use of alter­
native trial functions to the ones used by Davison 
yield lower bounds in terms of various noninteger 
sum rules, and bounds on these yield bounds on the 
constants. Similar remarks apply to a variational 
principle given by Epstein. 6 Finally, Barnsley has 
obtained excellent simple approximations to the van 
der Waals force constants by using the interpolation 
functions directly. It is among the purposes of this 
paper to establish an initial reference to the theory of 
sum rule functions on which results concerning the 
above-mentioned applications may be based. 

More generally, sum rule functions arise whenever 
a series of Stieltjes7 occurs, and hence the applications 
of their theory must be numerous. More precisely, if 

F(z) =1"'(1 + uzr1 dcp(u) = Jo( -z)nL"un dcp(u) 

is a series of Stieltjes, then the function 

S(f3) = 1''' uP dcp(u) 

is a sum rule function. 
This paper emphasizes quantum mechanical sum 

rule functions and frequent reference is made to a 
more detailed monographS in which more general 
proofs are given, including a description of a method 
for constructing the interpolation functions corre­
sponding to arbitrary interpolation points, and in 
which a fuller discussion of the nature of sum rule 
functions is presented. 

I. UNRESTRAINED N-SUM RULE FUNCTIONS, 
AND N-SUM RULE FUNCTIONS 

Definition 1: If a function of a real variable 13 can be 
written in the form 8N(f3) = ~;;~l VnE-;;il, where 
Vn ~ 0, Vn is real, and ° < El < E2 < ... < EN, 
then 8.vCf3) is an unrestrained N-sum rule function. 

Definition 2: If a function of a real variable 13 can be 
written in the form SN(f3) = ~;;~l VnE-;;fl, where 
Vn > 0, Vn is real and ° < El < E2 < ... < EN, 
then SNCf3) is an N-sum rule function. Unless otherwise 
stated, 8NCf3) will denote an unrestrained N-sum rule 
function; SNCf3) will denote an N-sum rule function. 

Theorem 1: S.vCf3) has at most (N - I) zeros, the 
zeros at 00 not being counted. 

Proof: We prove this by induction. True for the 
case N = I; suppose true N = I, 2, ... , K. Consider 
the zeros of SK+ICf3), where 

K+l [K+1 v: V-I ] 
SK+if3) = ~ VnE-;;P = V1E1il ~ (E nE~I)il + 1 , 

n-l n-2 n 1 

which has the form SK+1(f3) = V1E1il[SK(f3) + I]. 
Since V1E1fl ~ 0, it follows that 8K+1 (f3) has as many 
zeros as f(f3) , where f(f3) = (8 K(f3) + I). Now notice 
oS K(f3)/Of3 is an unrestrained M-sum rule function 
with M::; K. Hence of(f3)/of3 has at most (K - I) 
teros, by the inductive hypothesis. Hence f(f3) has at 
most K zeros. Hence SK+1Cf3) has at most K zeros. 
This completes the induction. 

Theorem 2: Any SNCf3) is uniquely defined by the 
values SN(f3i) , i = I, ... ,2N, where - 00 < 131 < 
. .. < f32N < 00. 

Proof: Suppose SN(f3) is an unrestrained N-sum 
rule function which agrees with SN(f3) for 13 = f3i' 
i = 1, ... ,2N. Then S M(f3) = 8 N«(3) - S NCf3) is 
either an unrestrained M-sum rule function with 
1 ::; M ::; 2N having 2N zeros or else S M(f3) == 0. 
The first alternative is not possible by Theorem I. 
Hence 8 NCf3) is unique. 

Theorem 3: If SN+l(f3) is an arbItrary (N + I)-sum 
rule function and S N(f3) is an arbitrary N-sum rule 
function, then [SN+1Cf3) - SN(f3)] has at most 2N 
zeros. 

Proo!, 
[SN+1«(3) - SN«(3)] = 8MC(3), 

with M ::; 2N + I. Hence by Theorem 1, 

[SN+l(f3) - SN«(3)] 

has at most 2N zeros. 

II. SUM RULE FUNCTIONS 

Definition 3: S«(3) is a sum rule function on the closed 
intervall = [a, b], where - 00 < a < b < 00, if there 
exists a sequence of N-sum rule functions {SNC(3)}N~1 
which is uniformly convergent to S«(3) for (3 E [a, b]. 
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In particular, if {SN(~)t~~1 is uniformly convergent 
for ~ E [a, b] for any b such that a < b < 00, then we 
say that S(~) is a sum rule function on [a, 00). If S(~) 
is a sum rule function on [a, 00) for all a such that 
- 00 < a' < a < 00, then we say that S(~) is a sum 
rule function on (a', 00). 

If r:t. > ° and yare real numbers, then the positive lin­
ear transformation L operates on the real variable fJ 
according to L~ = r:t.~ + y and operates on S(~) 

according to LS(fJ) = S(LfJ). If S(~) is a sum rule 
function on I = [a, b], then LS(fJ) is a sum rule 
function on [L-Ia, L-Ib]. If [a, b] and [c, d] are 
arbitrary given real intervals, then by defining an L by 
La = c, and Lb = d, we see that this L sets up a 
one-to-one correspondence between all sum rule 
functions on [a, b] and all sum rule functions on 
[c, d] because L has a unique inverse. We can also 
apply L to any N-sum rule function. This leads us to 
the foIlowing important observation. 

Theorem 4: Suppose we are given any sum rule 
function S(~) on, say, fa, bJ and any positive linear 
transformation L. Suppose further that we establish 
some bounding relationship between S(fJ) and an 
S.v(fJ) at some point c E [a, b], for example, Ss(c) > 
S(c). Then this same bounding relationship holds 
between the sum rule function S(fJ) = LS(fJ) and the 
N-sum rule function S.v(fJ) = LSN(fJ) at the point 
L-1c. Similar remarks apply to bounding relationships 
between M- and N-sum rule functions. 

III. INTERPOLATION OF A 2-SUM RULE 
FUNCTION USING A I-SUM RULE FUNCTION 
AND OF A 3-SUM RULE FUNCTION USING A 

2-SUM RULE FUNCTION 

Theorem 5: If S2(fJ) is an arbitrary 2-sum rule 
function and fJo < fJI are finite real numbers, then 
there exists an unique I-sum rule function SI(fJ) such 
that SI(~i) = SZ(fJi) for i = 0, 1. Moreover, SI(fJ) < 
S2(fJ) if ~ E ( - 00, fJo) U (fJI' 00), and SI (~) > Sz(fJ) 
if fJ E (fJo , fJl)' 

Proof: We need only prove this for fJo = 0, fJl = 1, 
for then by use of a suitable positive linear transforma­
tion L (Theorem 4) the proof can at once be generalized 
to give the theorem. 

Take SI(fl) = S2(O)(S2(O)/S2(l)]-P. Then SI(fl) is a 
I-sum rule function such that SI (fJi) = S2(fJi) for 
i = 0, 1. It is unique by Theorem 2. 

In fact, the general I-sum rule function interpolation 
is 

By Theorem 3, G(fJ) = [S2(~) - SI(fJ)] has at most 
two zeros. Hence, in this case, it has exactly two 
zeros; therefore the bounding relationships given in 
the theorem must be either true as they stand or else 
true with the inequality signs reversed. They are true 
as they stand because, taking ~ = 2 in the fJo = 0, 
fJl = 1 case, we have 

S2(2) - SI(2) = V1 V2[I/E1 - I/E2]2 > ° 
(see Definition 2). This completes the proof. 

Theorem 6: If S3(~) is an arbitrary 3-sum rule 
function and fJo < ~1 < fJz < fJ3 are finite real 
numbers, then there exists an unique 2-sum rule 
function S2(fJ) such that S2(~i) = S3(fJi) for i = 
0, 1,2,3. Moreover, Sz(fJ) < S3(~) for fJ E (- 00, 

fJo) U (fJl' fJ2) u (fJa, 00) and S2(fJ) > Sa(fJ) for fJ E 
(fJo, fJl) u (fJ2' fJa)' 

Proof: We will not prove this theorem for general 
interpolation points fJo < fJl < fJ2 < fJa. For this we 
refer to Ref. 8. Here we will consider only those sets 
of interpolation points such that fJi = L(i) for 
i = 0, 1, 2, 3. Hence (Theorem 4), we need only 
prove the theorem for fJi = i, where i = 0, 1,2,3. 

Denote S3(i) = Si for i = 0, I, 2, 3. Let E}, E2 be 
the roots of the quadratic equation 

(SIS3 - S~)E2 - (SOS3 - SIS2)E + (SOS2 - Si) = 0, 

and let 

x = (SOS2 - Si)E;/(SO - 2S1E1 + S2Ei), 

y = (So - x). Then, after some algebra,S we can 
verify that x > 0, y > 0, El > 0, E2 > 0, and El ~ E2. 
Hence, S2(~) = xE1fJ + YE"2/l defines a 2-sum rule 
function. Algebraically we can show that S2(i) = 
S3(i) = Si for i = 0, 1, 2, 3. By Theorem 2, S2(~) is 
unique. 

It remains to establish that Sz(fJ) has the stated 
bounding properties. 

Write a general S3(~) in the form 

S3«(J) = S3(fJ)(V1 , V2 , V3, El' E2' E3) 
3 

= S3«(J)(V, E) = 2: V;EifJ 

by Definition 2. Let D denote the connected9 domain 

D = {(v, E) = (VI' V2 , V3 , El: E2, E3) I Vi> 0, 

Ei > 0; i = 1,2, 3; El < EZ < E3}' 

Then S3(fJ)(V, E) is a continuous function for fJ E fR, 
(v, E) E D.Construct Sz({3)(v, E) from S3(fJ)(V, E) so 
that S2(i)(V, E) = Sa(i)(v, E) for i = 0, 1,2,3, as we 
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did above. Then Sl(3)(v, E) is also a continuous 
function for {3 ErR, (v, E) E D, although its functional 
dependence on (v, E) is very different from that of 
S3({3)(V, E) given above. 

Define G({3)(v, E) = (S3({3)(V, E) - S2({3)(V, E» on 
D. By Theorem 3, for any fixed choice of (v, E), 
G({3)(v, E) has at most four zeros, and hence it has 
exactly four. 

So, if we can show that G( -I)(v, E) > ° for all 
(v, E) E D, where we have arbitrarily taken {3 = -1 
to establish the point, then we will have proved that 
the bounding relations given in the theorem are true 
as they stand. It is easily verified that if (v, E) = 
(1,2,3, 1,2,3), then G( -I)(v, E) > 0. Hence, for 
the corresponding 3-sum rule function the theorem is 
true. Suppose that for some choice of (v, E), say 
(v, E) = (v", E"), we have G(-I)(v", E") ~ 0. Then, 
because D is connected, there must exist a (v, i) such 
that G( -I)(v, i) = 0. But then G({3)(v, i) has zeros 
at {3 = -1,0, 1,2, 3, in contradiction to Theorem 3. 
This completes the proof. 

IV. INTERPOLATION OF AN N-SUM RULE 
FUNCTION USING A I-SUM RULE FUNCTION 
AND OF AN M-SUM RULE FUNCTION USING 

A 2-SUM RULE FUNCTION (N > I, M > 2) 

Theorem 7: If SN({3) is an arbitrary N-sum rule 
function with N > 1 and {30 < (31 are finite real 
numbers, then there exists an unique I-sum rule 
function such that SI({3i) = SN({3i) for i = 0, 1. 
Moreover, SI ((3) < S N({3) if {3 E ( - 00, (30) U ({31' ex::» 

and SI ((3) > S N({3) if {3 E ({30, (31)' 

Proof' Take 

[
s N({30)] ((io-Pl/((i,-(io) 

Si(3) = SN({30) --
SN({31) 

(1) 

Then SI({3) is a I-sum rule function such that SI({3;) = 
SN({3;) for i = 0, 1. It is unique by Theorem 2. 

Now notice that if we knew VI" .. , V N, E1 ,' .• , 

EN for SN({3), then we could have constructed SI({3) 
as follows: Construct an SN-l({3) from Sl' .. ·({3) by using 
the I-sum rule function S~N-ll({3) defined by 

S~N-l)({3i) = V."I-IEt!':'l + VNEt!' for i = 0, 1 

as in Theorem 5, and then take 

N-2 
S N-i(3) = ~ VnE;;P + siN- 1 )({3). 

Then SN-l({3i) = SN({3;) for i = 0, 1, and, by Theo­
rem 5, S,v-l ((3) < S N({3) if {3 E ( - 00, (30) U ({31' 00), 
S,v-l({3) > S N({3) if {3 E ({3o, (31)' Proceed in this manner 
until a I-sum rule function is obtained which agrees 

with SN({3) at {30 and (31' This must be the same as 
SI({3) defined in (1), by Theorem 2. HenceS1({3) must 
have the bounding properties attributed to it in the 
theorem. This completes the proof. 

Theorem 8: If S M({3) is an arbitrary M-sum rule 
function with M > 2 and {30 < {31 < {32 < (33 are 
finite real numbers, then there exists an unique 2-sum 
rule function S2({3) such that S2({3;) = SM({3;) for 
i = 0, 1,2,3. Moreover, S2({3) < S M({3) for {3 E 

( - 00, (30) U ({31' (32) U ({33' ex::» and S2({3) > S M({3) 
for {3 E ({30, (31) U ({32' (33)' 

Proof' As in Theorem 6, we will prove the theorem 
only for sets of interpolation points such that (3i = 
L(i), where i = 0, 1, 2, 3 and L is a positive linear 
transformation. Hence (Theorem 4) we need only 
establish the theorem for interpolation points (3i = 
0,1,2,3. 

Denote S M(i) = Si' for i = 0, 1, 2, 3. Let €1' €2 be 
the roots of the quadratic 

(SIS3 - S~)€2 - (SOS3 - SIS2)E + (SOS2 - S~) = 0. 

Let 

x = (SOS2 - sD€~/(So - 2S1€1 + S2€~)' 
any y = (So - X). Take 

S2({3) = xM + YM. (2) 

If we had known VI' ... , V M, E1, ... , EM corre­
sponding to S M({3) , then we could have obtained a 
2-sum rule function with the bounding properties 
given in the theorem, in a manner similar to that used 
in the proof of Theorem 7. This ensures that an 
S2({3) does indeed exist with the cited properties. 
Theorem 2 tells us that it is unique. Since Eq. (2) defines 
a function which formally fulfills the requirements of 
this 2-sum rule function, it must actually define it. 
This completes the proof in the case of (3i = L(i), 
i = 0, I, 2, 3. For general interpolation points we 
refer to Ref. 8. 

It should be noticed that Theorem 7 constructs the 
requisite I-sum rule function from the values SN({3i), 
i = 0, 1, and utilizes no further information. A similar 
remark applies to Theorem 8. 

V. INTERPOLATION OF ANY SUM RULE 
FUNCTION USING A I-SUM RULE 
FUNCTION AND USING A 2-SUM 

RULE FUNCTION 

Let S({3) be any sum rule function on some closed 
interval I = [a, b]. Then there exists a sequence of 
N-sum rule functions {SN((3)}N_l which is uniformly 
convergent to S({3) on I (Definition 3). 
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Theorem 9: If S(fJ) is an arbitrary sum rule function 
on an interval I = [a, b] and fJo < fJl are finite real 
numbers belonging to I, then there exists an unique 
I-sum rule function such that SI(fJi) = S(fJi) for 
i = 0, 1. Moreover, SI(fJ) :::;; S(fJ) if fJ E (- 00, fJo) U 

(fJl, 00) and SI(fJ) > S(fJ), if fJ E (fJo, fJl)' 

Proof: Let {SN(fJ)}~Ll be a sequence of N-sum rule 
functions uniformly convergent to S(fJ) on I. 

Let slN) (fJ) be the I-sum rule interpolation to 
S N(fJ) which is exact at fJo, fJl' Then (Theorem 7) 

slNl(fJ) < S N(fJ) if fJ E ( - 00, fJo) U (fJl' 00), 

slNl(fJ) > S.v(fJ) if fJ E (fJo, fJl)' (3) 

Let 

SI(fJ) = lim slNl(fJ) = S(fJo)[S(fJO)/S(fJl)tfJ o-P)/(fJdo). 
N-+riO 

Then Sl(fJ) is a I-sum rule function which agrees with 
S(fJ) at fJo, fJl; taking limits as N - 00 in (3), we 
see moreover that 

Sl(fJ):::;; S(fJ) if fJE (-oo,.fJo) U (fJl, 00), 

Sl (fJ) ~ S(fJ) if fJ E (fJo, fJl)' 

Sl(fJ) is unique by Theorem 2. This completes the 
proof. 

Theorem 10: If S(fJ) is an arbitrary sum rule function 
on an interval I = [a, b] and fJo < fJl < fJ2 < fJ3 are 
finite real numbers belonging to I, then there exists a 
unique 2-sum rule function S2(fJ) such that S2(fJi) = 
S(fJi) for i = 0, 1, 2, 3. Moreover, S2(fJ):::;; S(fJ) if 
fJ E ( - 00, fJo) U (fJl, fJ2) U (fJ3, 00) and S2(fJ) ~ S(fJ) 
if fJ E (fJo, fJl) U (fJ2, fJ3)' 

Proof: The proof is similar to the proof of Theorem 
9. We will only give the construction of S2(fJ). Again 
we will concern ourselves with sets of interpolation 
points such that fJi = L(i), where i = 0, I, 2, 3, and L 
is a posi!ive linear transformation, so we will give the 
construction only for fJi = i where i = 0, I, 2, 3. 

Let SCi) == Si' Use the construction (2) given 10 

Theorem 8. 

VI. QUANTUM MECHANICAL SUM 
RULE FUNCTIONS 

Theorem II: If a function S(fJ) can be written in the 
form 

S(fJ) = LX) u-fJ drjJ(u), 

the integral being convergent in the Riemann-Stieltjes 
sense for fJ = fJo and fJ = fJl, where fJo < fJl and 
where rjJ(u) is (i) monotone nondecreasing and (ii) 

taking infinitely many values on (0, 00), then the 
integral exists for fJ E [fJo, fJd and S(fJ) is a sum rule 
function on this interval. 

Proof: 

S(fJ) = (riO ufJd[ _ rjJ(1/u)] + (riO u-fJ drjJ(u) 
Jl J1+ 

= (OOufJ d~(u) + (OOu-fI drjJ(u), 
Jl J1+ 

where ~(u) = -rjJ(1/u). Both rjJ(u) and ~(u) are 
monotone nondecreasing in [l, 00) and at least one of 
rjJ(u) and ~(u) takes infinitely many values in [1, 00). 
For simplicity we will assume that both rjJ(u) and ~(u) 
take infinitely many values in [1, 00); then S(fJ) has 
the form 

S(fJ) = T' ( - fJ) + T" (fJ), 

where T'(fJ), T"(fJ) are functions of the special form 
T(fJ) = H' u-fI dO(u), where O(u) is monotone non­
decreasing and takes infinitely many values in [I, 00). 

It is easily seen that the convergence of S(fJ) at fJo 
and fJl ensures the convergence of T'( -fJ) for fJ E 

(- 00, fJd, and ensures the convergence of T"(fJ) for 
fJ E [fJo, 00). Hence S(fJ) certainly converges for 
fJ E [fJo, fJl]' 

We must show that T(fJ) is a sum rule function on 
[fJ' , fJ"] providing it is convergent at fJ', where 
- 00 < fJ' < fJ" < 00 and fJ" is arbitrary. 

We will assume that dO(u) = tp(u) du, where tp(u) is 
continuous for u E [1, 00). The argument easily 
extends to treat the most general case. 

Let h > 0 be prescribed arbitrarily small. Suppose, 
without loss of generality, that fJ' > O. Since T(fJ) is a 
monotone decreasing in fJ and since the' integral 
T(fJ') exists, it follows that there exists a finite real 
number k such that 

0:::;; 100 

u-fltp(u) du < ih for fJ E [fJ', fJ"]. (4) 

Define a sequence of equipartitions {~N}N=l on the 
interval [1, k], ~M being the set of (M + I) equally 
spaced points 

1 = a~l < af f < ... < a1\} = k. 

Define two M-sum rule functions on ~.M: 

n=l 

where 

'I"!1 = max {tp(u) I u E [a~:'l' a~]}, 
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and 

1jJ~1 = min {1jJ(u) I U E [a~:'l' a~]}. 
Then 

sf.v(f3) ~ ik U-P1jJ(u) du ~ SrN(f3) 

for all N and for all f3 E [f3', f3"], (5) 

and we have 

Since 1jJ(u) is continuous on the compact set U E 

[1, k], there exists an integer Nl such that N> Nl 
implies 

o ~ ('F~ - 1p~) < Hk - l)-lh. 

Since 1p~ is bounded above for all nand Nand 
since the functionf(a, (3) = l/aP is continuous on the 
compact set a E [I, k], f3 E [f3', f3"], there also exists 
an integer N2 such that N > N2 implies 

o ~ 1p~{(a~_l)-P - (a~rp} < Hk - l)-lh 

for all f3 E [f3', f3"]. 

Hence, N > max {N1 , N 2} implies 

o ~ SfN(f3) - Stv(f3) < lh for all f3 E [p', f3"], 

whence, from (5), for N > max {N1 , N 2}, 

o ~ ik u-P1p(u) du - SrN(f3) < lh 

for all f3 E [Pi, P"], 

and finally, from (4), for N > max {N1 , N2}, 

o ~ T(P) - SrN(p) < h for all (3 E [(1', P"]. 

We deduce that T(P) is a sum rule function as 
required, and the theorem follows. 

Definition 4: Any sum rule function which can be 
written in the form given in Theorem 11 will be called 
a quantum mechanical sum rule function. 

-3.5 

t 
s(,8) 

o 
/3-+ 

FIG. 1. An example of a 
quantum mechanical sum 
rule function. Here S({3) 
corresponds to q = 0 and 
dipole oscillator strengths. 
S({3) diverges to plus infinity 
at -3.5, is convergent 
everywhere to the right of 
this point, and takes its 
only minimum somewhere 
in (-3.5, 00]. This figure is 
only a schematic representa­
tion. 

In quantum mechanics we are interested in the 
families of sum rules Sq(k) = I~ E;:Vqj , where Vqi is 
an oscillator strength corresponding to a transition 
from state q to state j, Eqj being the corresponding 
transition energy, and where the summation is under­
stood to include an integration over the continuum 
states of the atom or molecule under consideration. 
We are concerned only with those cases where all the 
Vqj are positive, for then, by the above theorem 
Sq(k) is a quantum mechanical sum rule function. 
(According to our definition, the model harmonic 
oscillator problem does not yield a quantum me­
chanical sum rule function.) This occurs, for example, 
when q = 0 and VOj = fOj' the hj being dipole 
oscillator strengths. In such cases we prefer to write 

Sq(k + 1) = Sq(k) = I' E;jk-1Vqj = I' E;jkVQj , 
j j 

where VqjE;} = Vqj , so that the value of sq(O) is 
independent of the choice of energy scale. Moreover, 
we will refer to sq(f3) rather than Sq(k) to emphasize 
the functional dependence on the real variable f3, 
rather than the integer variable k. 

What does a quantum mechanical sum rule function 
look like? Suppose we have an sq(f3), as above, where 
the smallest energy involved, say ElO , is positive. Then, 
if we take ElO as the unit of energy, we see that sq(f3) 
becomes a monotone decreasing function of (3, and 
hence that it must be convergent at least on an interval 
of the form (ai, (0) (see Definition 3). More generally, 
sq(P) has only one turning point and this is a minimum 
(see Fig. 1). [Formally, the second derivative of an 
sq(tJ) with respect to P is positive whereever it is 
convergent.] 

Given that we are dealing with a (quantum me­
chanical) sum rule function S(q)(P) defined on some 
interval I, say (ai, (0), and given further the values of 
S(q)(Pi) for various Pi E I, where i = 1,2, ... ,j and 
j = 1,2,3,4, or 5,10 then we can apply the results of 
Sec. V to impose upper and/or lower bounds on 
S(q)(P) for all other pEl. In the next section, we show 
that these bounds are the very best possible that can 
be obtained on the basis of the given information. 
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VII. BEST POSSIBLE BOUNDS TO (QUANTUM 
MECHANICAL) SUM RULE FUNCTIONS ON 
THE BASIS OF THE GIVEN INFORMATION 

Definition 5: If S(~) is a sum rule function on [a, b], 
then the value of SUJ') for some particular P' E [a, b) 
is called a sum rule. 

We will abbreviate the statement "On the basis of 
the given information" to "OBGI." When we say 
that a set of bounds on a sum rule function are best 
possible OBGI we shall mean that they are 

(i) optimal, i.e., that the bounds are the very closest 
that can be imposed OBGI, 

(ii) extensive, i.e., that there is at least one bound 
corresponding to each value of P, 

(iii) exclusive, i.e., that OBGI no other nontrivial 
bounds can be imposed on S(~), where zero and plus 
infinity are considered to be the trivial bounds. 

A. Best Possible Bounds on a (Quantum Mechan­
ical) Sum Rule Function When One Sum Rule Is 

Known,OBGI 

Suppose that we know S(~) is a (quantum me­
chanical) sum rule function on some interval, say 
(a', 00), and that we know S(~/) for some ~' E (a', 00); 
then it is impossible to impose nontrivial bounds on 
S(~) for ~ ¥= ~/, OBGI. 

Proof: If S(P) is a (quantum mechanical) sum rule 
function, then so is S(~) = VE-PS(P) for any V> 0, 
E > 0. Let P" be any point such that P" ¥= P' and 
~" E (a', 00). Since S(~") must be positive and finite, 
we can choose V and E such that (i) VE-P' = 1, 
(ii) V E-P" S(P") is arbitrarily large or arbitrarily small. 
The existence of S(P) thus defined completes the proof. 

B. Best Possible Bounds on a (Quantum Mechan­
ical) Sum Rule Function When Two Sum Rules 

Are Known, OBGI 

Suppose that we know S(~) is a (quantum me­
chanical) sum rule function on some interval, say 
(a', 00), and that we know S(Po), S(PI) for Po < PI' 
where ~o, PI E (a', 00); then the best possible bounds 
OBGI are those given by the I-sum function SI(~) 
constructed in Theorem 9. 

Proof: The bounds given by SI(P) are certainly 
extensive. We must prove that they are optimal and 
exclusive. 

Let J c (a', 00) be any given closed interval which 
contains ~oand PI' It is easily seen that we can con­
struct a (quantum mechanical) sum rule function S(~) 
which lies arbitrarily close to SI(~) for all ~ E J and 
which takes any arbitrarily large finite value at any 
prescribed point P' $ J, (J' E (a', 00). Suppose S«(Jo) -
SI«(JO) = ({!o and S«(JI) - SI«(JI) = ({!I' Choose V> 0 

and E > ° such that 
P - -V E- "SCPo) = S(~o) - !flo, 
p - -V E- lS(PI) = S«(JI) - !flI' 

Then S(P) = VE-PS(P) is a (quantum mechanical) 
sum rule function. It agrees with SI«(J) at Po and PI' 
lies arbitrarily close to it on J, and is arbitrarily large 
at ~/. 

Hence the bounds imposed by SI(~) as constructed 
in Theorem 9 must be optimal, OBGI. 

Moreover, we cannot impose nontrivial upper 
bounds on S(~) outside [(Jo, PI] OBGI, nor, as can 
easily be shown by construction of a (quantum 
mechanical) sum rule function which agrees with 
SI(P) at Po, (JI' taking a value arbitrarily close to zero 
at any prescribed point ~" E (~o, ~I)' can we impose 
nontrivial lower bounds on S(~) for P E (~o, ~I)' 
OBGI. Hence the bounds are exclusive. This completes 
the proof. 

C. Best Possible Bounds on a (Quantum Mechan­
ical) Sum Rule Function When Three Sum Rules 

Are Known, OBGI 

Suppose that we know S(~) is a (quantum me­
chanical) sum rule function on some interval, say 
(a', 00), and that we know S(~o), S(~I)' S(~2) for 
(Jo < (JI < ~2' where ~o, ~I' ~2 E (a', 00), then the 
best possible bounds OBGI are those given by the two 
I-sum rule functions Sf(P), i = 0, 1, where Sf(~) is 
the I-sum rule function which agrees with S(~) at ~i 
and PHI' as constructed in Theorem 9. 

Proof: (See Fig. 2.) Without going into the details 
(which are given in Ref. 8), we merely point out that 
it is possible to construct a (quantum mechanical) sum 
rule function which agrees with S«(J) at the interpola­
tion points and which would contradict any proposed 

0' 

I 
I 

.,/ 

~"\:o~E.t\ 

S(,8) 

/S:(,8) 

. - . .L.-
LOWE~-'-'_ '-S~(f3) 

/3, /32 

/3-
FIG.2. This figure schematically designates the bounding relation­

ships between the three functions. S({3) is a hypothetical sum rule 
function (quantum mechanical) which we have supposed is divergent 
to plus infinity at a'. 
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I .... '!.!e.,£/f 
5, (,8)-' _. Lo~ER' --

0' f30 f3, 

5(t1) 

f32 f3. 
f3-

FIG. 3. This figure schematically designates the bounding relation­
ships between the three functions. 

improvement (OBGI) on any of the bounds which are 
supplied by the sf(tJ) functions in the configurations 
shown in Fig. 2. Moreover, we can again show that it 
is impossible to prescribe a nontrivial upper bound 
(OBGI) on S«(3) outside [(30' (32]' 

D. Best Possible Bounds on a Quantum Mechanical 
Sum Rule Function When Four Sum Rules Are 

Known 

Suppose that we know S«(J) is a (quantum me­
chanical) sum rule function on some interval, say 
(a', ex), and that we know S«(Jo), S«(Jl) , S«(32) , S«(33) 
for (30 < (31 < (32 < (33' (3i E (a', (0) for i = 0, 1,2,3; 
then the best possible bounds OBGI are those given 
by the 2-sum rule function which agrees with S«(J) 
for (3 = (3i' i = 0, 1,2, 3, as constructed in Theorem 
10, together with the I-sum rule function SI((3) which 
agrees with S«(J) at (31 and (32' 

Proof' (See Fig. 3.) Without going into the details 
(which are given in Ref. 8), we merely point out that 
it is possible to construct a quantum mechanical sum 
rule function which agrees with S((3) at the interpola­
tion points and which would contradict any proposed 
improvement (OBGI) on any of the bounds which 
are supplied by SI«(J) and S2((J) in the configurations 
shown in Fig. 3. Moreover, we can show that it is 
impossible to prescribe a nontrivial upper bound 
(OBOI) on S(fl) outside [flo, fl3]' 

E. Best Possible Bounds on a Quantum Mechanical 
Sum Rule Function When Five Sum Rules Are Known 

We simpl y refer to Fig. 4. 
Weinholdll presents a method for obtaining optimal 

bounds, having been given some particular set of sum 

0' Po f3, f3z 

P-
PI P. 

FIG. 4. S~(f:J) and S~(P) are the two 2-sum rule functions which 
agree with S(P) at Po, PI' P., Pa and at PI' P., P3' P. , respectively. 
This figure schematically designates the bounding relationships 
between the three functions. 

rules, on a few other sum rules. The bounds derived 
from the given set of sum rules are neither extensive 
nor exclusive. Certainly, the results he obtains from 
sets of two, three, four, or five known sum rules are 
particular cases of the results obtained here. 

Theorem 9 has already been presented by Kramer4 

but the best possible statement is new. 
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We write the S matrix in the form S = exp (i1]) and study the analytic properties of the 2-body matrix 
elements of 1] as a function of two complex variables. We find that the 2-body matrix elements of 1] 

have analytic properties similar to those of the K matrix and the second sheet scattering matrix. In 
particular, they do not possess Mandelstam analyticity. 

1. INTRODUCTION 

To implement the requirement of unitarity imposed 
upon the scattering matrix S, it is tempting to write 

S = exp (i'Yj) (Ll) 

and require that 'Yj be Hermitian.! For example, one 
might consider a calculational scheme in which 'Yj 

is expanded in powers of a coupling constant.2 The 
S matrix would then be unitary in each order of 
perturbation. We observe also that if 'Yj (and hence S) 
is diagonalized, its eigenvalues are equal to twice the 
scattering eigen phase shifts. In this note we study the 
two-body matrix elements of 'Yj and find that they have 
analytic properties similar to those of the K-matrix. 
In particular, the matrix elements of 'Yj have singular­
ities in the momentum transfer variable whose 
position depends upon the energy. Thus, they do not 
satisfy the Mandelstam representation or the usual 
energy dispersion relations at fixed momentum 
transfer. 

2. NOTATIONAL PRELIMINARIES 

F or simplicity, we shall consider a theory in which 
there are only two kinds of spinless particles. We 
denote a two particle plane-wave state by Ipk) and 
assign a relativistically invariant scalar product by 
the rule 

(p'k' I pk) = Ewo3(p - p')o3(k - k'). (2.1) 

Here E and ware the "energy" components of p and k 
respectively. To complete the notation, we setp2 ~ M2 
and k 2 = m 2

• 

We know that S commutes with the generators of 
the Poincare group, and require that 'Yj also do so. 
Thus, we may write 

(p'k'i r; Ipk) = 04(P + k - p' - k')h(s, t), (2.2) 

where sand t are the usual Lorentz invariant variables 

Since r; is Hermitian, it follows that h is real for sand t 
physical. 

In order to relate the matrix elements of r; to phase 
shifts, it is convenient to introduce two particle states 
having a definite angular momentum. We define a 
two-particle angular momentum state at rest in the 
center-of-momentum frame in terms of linear­
momentum states by the equation 

IQOJJ3! = [4q(2J + 1)]lS-iJ dRD~:.o(R)V(R) jpOko). 

(2.4) 

Here dR indicates Haar integration over the rotation 
group, and pO, kO, and QO are the 4-vectors 

with 

and 

po = (qe3 , EO), 

kO = (-qe3 , WO), 

QO = (0, 0, 0, sl), 

(2.5) 

q = [s - (M + m)2]l[s - (M - m)2]lj(2sl). 

Angular-momentum states with an arbitrary total 
4-momentum Q are obtained by writing 

(2.6) 
where 

(2.7) 

and L is a pure velocity transformation. From the 
definitions (2.4), (2.6), and the normalization rule 
(2.1), one obtains the analogous rule 

(Q'J'J~ I QJJ3) = oiQ' - Q)O.T'JOJa'Ja' (2.8) 

Equation (2.4) can also be inverted to express linear­
momentum states in terms of angular-momentum 
states. One finds 

U(R) Ilko) = i(47Tq)-i 2 D~a.o(R)(2J + l)i IQOJJ3). 

JJa 

s = (p + k)2, 

t = (p _ p')2. 

(2.9) 

Now suppose s is physical, but below the first 
(2.3) inelastic threshold. Then, from Poincare invariance, 
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we must have 

r; IQJJ3 ) = hAs) IQJJ3 ), (2.10) 

where hAs) is real. By the definition of phase shifts in 
the elastic region, we may write 

S IQJJ3 ) = exp (2ioJ) IQJJ3 ). (2.11) 

It follows from Eq. (1.1) that 

hJ(s) = 2oJ(s) (2.12) 

in the elastic region. 
Using Eqs. (2.4) and (2.9), we find that hAs) and 

h(s, t) are related by the formulas 

h(s, t) = S!(47TQ)-1 2: (21 + l)hAs)PAz), (2.13a) 

hJ(s) = 27TQS-i flh(S, t)P Az) dz, (2.13b) 

where z is the cosine of the scattering angle given by 

t = -2q2(l - z). (2.14) 

We shall also need a relation between hAs) and the 
partial wave scattering amplitude defined by 

<Q'J'J~I T IQJJ3 ) = 0J'Jo"3J,OlQ' - Q)AJ(s), 

(2.15) 
with 

S = I + 2iT. (2.16) 

Comparison of Eqs. (2.11) and (2.15) gives 

exp (2ioJ) = I + 2iAAs). (2.17) 

Thus, in the elastic region, we obtain the relation 

hJ(s) = -i log [1 + 2iAAs)]. (2.18) 

Of course, the familiar plane-wave scattering ampli­
tude A(s, t), defined by 

(p'k'i Tlpk) = 04(P + k - p' - k')A(s, t), (2.19) 

is related to the partial amplitude AJ(s) by formulas 
similar jo Eqs. (2.l3a) and (2.13b), 

A(s, t) = S!(47TQ)-1 2: (21 + l)AAs)P JCz) (2.20a) 

and 

AAs) = 27TQS-~ flA(S, t, u)P JCz) dz. (2.20b) 

3. ANALYTIC PROPERTIES OF h(s, t) 

We shall assume that A(s, t) enjoys the analytic 
properties of the Mandelstam representation. Thus, 
it is assumed analytic in the topological product of 
cut s, t, and u planes with u given by 

s + t + u = 2m2 + 2M2. (3.1) 

To establish a nomenclature, the s plane, for example, 
is cut from S1 to + 00 with S1 real and positive. We take 
the cuts to include possible poles. The aim of this 
section is to deduce the analytic properties of h(s, t) 
from those assumed for A(s, t). 

It follows from the Mandelstam analyticity of 
A(s, t) and Eq. (2.20b) that AAs) is analytic in the 
entire s plane when the latter is cut along various 
portions of the positive and negative real axes. Further, 
AAs) is known to be analytic along the real axis in the 
elastic region apart from a branch point at the elastic 
threshold.3 It foHows from Eq. (2.18) that hAs) is also 
analytic along the real axis within the elastic region. 
We now extend hAs) to the remainder of the s plane by 
analytic continuation. It is clear that hAs) will be 
analytic everywhere that AJ(s) is, except for possible 
logarithmic branch points where the argument of Eq. 
(2.18) vanishes. Such vanishing cannot occur for s in 
the elastic region since it would violate unitarity. 
Further, it can at most occur a finite number of times 
in any compact region of the s plane, since otherwise 
AAs) would have the constant value ti. Consequently, 
these possible branch points are isolated. 

We should remark that our definition of hAs), 
when analytically extended to inelastic values of s, 
is at odds with the reality of h(s, t) required by 
hermiticity. For it is clear that in the process of 
analytic continuation, Eq. (2.12) should continue to 
hold and oAs) has an imaginary part above the first 
inelastic threshold. Thus, h(s, t), when evaluated in 
various intervals along the real axis, is not the boundary 
value of a single analytic function. A similar result holds 
for the K matrix. 

In the previous paragraphs, we sketched the 
analytic properties of hAs). The function h(s, t) will 
have the same analytic properties as a function of s for 
fixed t provided the series of Eq. (2.13a) converges. 
The remainder of this section will be devoted to 
studying the domain of convergence of this series and 
its analytic continuation outside its convergence 
domain. 

We know from the theory of Legendre series4 that 
the sum in Eq. (2.13a) will converge to an analytic 
function in the z plane within an ellipse having foci at 
± I and a semimajor axis .A(, given by 

(3.2a) 
with 

R = liminflhJCs)l-l1J (3.2b) 

It follows from Eq. (2.18) that 

lim inf IhJ(s)I-1/J = lim inf IAAs)I-11J, (3.3) 

since A As) approaches zero exponentially with 
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increasing 1. Consequently the domain of convergence 
for the expansion (2.13a) is the same as that for Eq. 
(2.20a). 

Again from the theory of Legendre expansions, the 
series (2.20a) converges within the largest ellipse in the 
z plane for which A(s, t), when viewed as a function 
of z for fixed s, is analytic. We denote this ellipse by 
E1(s), and the singular points on its boundary by the 
generic symbol Zl(S). The singularities in z are, of 
course, the images of singularities in t and u under the 
mappings given by Eqs. (2.14) and (3.1). Thus, for 
example, if A(s, t) is singular at t1 , then 

(3.4) 

At this point we have learned that h(s, t) is simul­
taneously analytic in sand t for s not on the previously 
studied singularities of hAs), and t such that z E E1(S). 
Our next task is to continue h analytically in z (and 
hence in t) beyond E1(S). We begin by noting that Eq. 
(2.18) can be rewritten in the form 

hAs) = fdAJj(S) , (3.5) 

where j}(s) is defined by writing 

fj(s) = AJ(s)[l + iJ.AAs)rl . (3.6) 

Here we take the contour of integration in A to be such 
that zeros in the denominator of j~(s) are avoided. 
Next define pes, t) by the rule 

F(s, t) = S!(41TQ)-1 L (21 + l)fJ(s)PAz). (3.7) 

By virtue of our definition, we have the relation 

h(s, t) = fdA/"«S, t), (3.8) 

and our problem is reduced to studying the analytic 
properties ofP-(s, t). 

Before continuing further, it is necessary to make a 
small mathematical digression. 

Theorem: Suppose one is given two functions F(z) 
and G(z), both of which are analytic in the interval 
[ -1, 1] and whose singularity structure is completely 
known. Expand each in Legendre polynomials 

F(z) = L (21 + l)FJPAz) , etc. (3.9) 

Consider the function H(z) defined by the series 

H(z) = l: (21 + l)FJGJPJ(z). (3.10) 

Then H(z) , when analytically continued, has singu­
larities only at points ZH given by the relation 

zH = ZFZa + [(z~ - 1)(z~ - I)]!, (3.11) 

where ZF and Za are singular points of F and G.5 

Proof: We note that Legendre polynomials obey the 
integral relation 

f dQbPAa' b)P J,(b . c) = 41T(21 + l)-l<5JJ,PAa' c), 

(3.12) 

where a, b, and c are three unit vectors. Thus, Eq. 
(3.10) can be rewritten in the form 

H(a' c) = (41T)-1 J dQbF(a . b)G(b . c). (3.13) 

Next exploit the known analytic properties of F and 
G by writing Cauchy representations of the form 

F(a' b) = (21Ti)-lf/WF(W)(W - a' btl etc., (3.14) 

where C is some counterclockwise contour encircling 
the interval [-1, 1]. Inserting these representations 
into Eq. (3.l3),we obtain 

H(z) = [ dWl [ dW2F(Wl)G(w2)R(Wl' W2, z), (3.15) 
JC1 JC2 

where R is an integral kernel given by 

R(Wl' W 2 , a' c) 

= (21Ti)-2(41T)-lJ dQb(Wl - a' brl (w2 - b' C)-I. 

(3.16) 

The indicated integration for R can be performed 
directly with the result 

R(WIW2Z) = (81T2)-lr-i 

X log [(W1W2 - Z + ri )/(w1W 2 - z - ri )], 

where 
(3.17) 

r = w; + w~ + Z2 - 2WlW2Z - 1. (3.18) 

A careful study of R as a function of z for fixed WI 

and W2 shows that it is analytic in the z plane cut from 
Zl to + 00 with Zl given by 

Zl = WIW2 + [(w~ - 1)(w~ - 1)]i. (3.19) 

In fact, R has the integral representation 

R(WlW2Z) = -(21T)-2loodW3(W3 - z)-lr-!(wlw2W3). 
Z1 

(3.20) 

Looking at Eq. (3.15), we see that H is certainly 
analytic when z differs from the values of Z1 given by 
Eq. (3.19) as WI and W2 range over the contours C1 

and C2 • Further, the contours C1 and C2 can be 
distorted at will unless one encounters singularities 
of F and G. Consequently, H will be singular only at 
points given by Eq. (3.11). 
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We now return to our earlier discussion. Note that 
Eq. (3.6) can be rewritten in the form 

f;(s) = AAs) - ;AAAs)fJ(s). (3.21) 

Multiply both sides of Eq. (3.21) by st(41TQ)-1(2J + 
I)P J(z) and sum over J. The result is 

fj(s) = A(s, t) - iAS1(41Tq)-1 

X 2: (2J + l)AAs)f;(s)P Az). (3.22) 

Finally, apply the theorem summarized by Eqs. (3.10) 
and (3.15) to obtain the integral equation 

f).(s, t) = A(s, t) - i41TQS-t 

x, r dWl r dw2A(s, t1)P{s, t2)R(WIW2Z). JCt JC2 
(3.23) 

Here tl and t2 are given by the relations 

t1 = -2q2(1 - IVI), etc. (3.24) 

With the aid ofEq. (3.23), the analytic continuation 
ofF(s, t) outside of E1(S) can be made immediately. 
We already know that A(s, t) and/'Cs, t) are analytic 
for Z E E1(S). It follows that the term in Eq. (3.23) 
involving the double integral is analytic in a larger 
ellipse E2(S) whose boundary must lie on (or perhaps 
beyond) the boundary obtained by inserting into Eq. 
(3.19) values of WI and »'2 lying on the boundary of 
El(S), Thus, the singularities of F(s, t) within E2(S) 
are the same as those of A(s, t),F(s, t) is also singular 
at the point or points ZI(S). The analytic continuation 
ofF(s, t) from E1(S) to E2(S) has been accomplished. 

A simple extension of our previous argument 
permits us to continue F into a still larger ellipse £3(S). 
Since we now know that F is analytic within £2(S) 
except for singularities at Zl(S}, we can conclude that 
the integral in Eq. (3.23) is analytic in an ellipse £3(S) 
[which is larger than £2(S)] except for singularities at 
points Z2(S) given by 

Z2(S) = Z;ZI + [(Z~2 - l)(z~ - 1)]1. (3.25) 

The general pattern should now be clear. By 
repeated iteration of our argument, we find that p. is 
analytic in ever larger ellipses except for points z'" 
given by 

z" = ZpZy + [(z: - l)(z~ - 1)]i, (3.26) 

where zp is a singular point of A and Zy is a singular 
pOint of p. found in previous iterations.6 

In summary, we have found that IA(s, t) is simul­
taneously analytic in sand t except for 

(a) the usual singularities of AAs) in the s plane, 

(b) poles in s due to zeros in the denominator of 
p. for fixed A. See Eq. (3.6). These poles may also be 
viewed as simple poles in A whose position depends 
upon s. 

(c) the usual singularities of A(s, t), 
(d) singularities given by Eq. (3.26). Suppose, to 

give a simple example, that A(s, t) has a singularity in 
t only at t = 11' We then find, by successive iteration, 
thatI'"(s, t) has singularities at the points 

12(S) = 4tl + ti/(q2), 

ta(s) = 9t1 + 6ti/(Q2) + t~/(q4), etc. (3.27) 

Finally, let us return to our object of interest, 
h(s, t). Looking at Eq. (3.8), we see that h will be 
simultaneously analytic in sand t except at the points 
enumerated under the headings a, c, and d in the 
previous paragraph. In addition, h will have loga­
rithmic singularities in s whenever the A poles [of head­
ing b) coincide with the integration end point A = 2. 
These are just the logarithmic branch points already 
found in hAs). 

4. DISCUSSION 

It is interesting to compare the analytic properties 
of the phase matrix 'r} with those of the K matrix and 
T(2), the second sheet transition matrix. If we denote 
the usual first sheet transition matrix simply by T as 
before, we may define 'r}, K, and T(2) by the relations 

'r} = -ilog [1 + 2iT], (4.1) 

K = 2i(1 - S)(1 + S)-1 = 2T[1 + iTJ-1 , (4.2) 

T(Z) = TS-l = T[l + 2iT]-I. (4.3) 

Observe that the definition of 'r} can be recast in the 
form 

'r} = fdJ.F(A), (4.4) 

where 
FO.) = T(l + iAT)-l, (4.5) 

We immediately see the relations 

K/2 = F(1), 

T(2) = F(2). 

(4.6) 

(4.7) 

We also note that Eq. (4.5) can be rewritten in the form 

F(A) = T - JATF(A), (4.8) 

It is easy to check that Eq. (3.23) is equivalent to Eq. 
(4.8) if our attention is restricted to two-body matrix 
elements. We conclude that the analytic properties 
of K, T(2), and F (and hence 'r}) are essentially the same. 



                                                                                                                                    

ANALYTIC PROPERTIES OF THE PHASE MATRIX 969 

In particular, matrix elements of K, F, and r; will 
possess the Landau singularities [given by Eq. (3.26)] 
already well known for T(2). Thus, their matrix 
elements cannot satisfy the M andelstam repre­
sentation. 
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Considerable computational time can be saved by the use of separable approximations to matrices 
and functions of two variables. Such approximations are considered in general. 

In solving the Schrodinger equation for a nucleon 
in a cylindrically symmetric potential, the most 
efficient method is expansion of the wave function in 
products of oscillator eigenfunctions. The matrix 
elements of the potential are then of the form 

V;;.kl = f q;;(z)X~(p)V(p, z)q;iz)xz<p)p dp dz. (1) 

Typically, there are 60 or so pairs (k, I), so that of 
order 2,000 integrals of the type (1) must be evaluated 
for a given function V. If 500 points per integral were 
used, this would give 106 evaluations of the integrand 
and a major contribution to the total time of the 
eigenvalue computation. 

Stimulated by S. Wahlborn's suggestion that it 
might be feasible to "factor" the potential V, we have 
developed the formal theory of such factorization. It 
turns out to be both possible and extremely useful. 
Consider first the saving that can be made if V is 
approximated by 

N 

VN(p, z) '" !,!v(p)gv(z). (2) 
v=l 

Then the integral in (1) becomes 

V~l f q;;(z)giZ)q;k(Z) dz f x"!(p)fip)xl(p)p dp (3) 

so that of the order of 120 one-dimensional integrals, 
each needing, say, 25 points, must be evaluated. 
Typically N is less than 10, so that the total number 

of operations is less than 30,000, a saving of a factor 
of at least 30. 

To justify our consideration of matrices, we note 
that an integral of the type (1) is generally evaluated 
by using a Gaussian sum with weights wp and w. 
appropriate to the long-range behavior of the integrand 

Na Np 
V;;.kl'" ~ ~wkt.)w.(P)q;;(zp)X"!(Pa) 

a=l/3=l 
x V(Pa' zp)q;k(zp)xlPa), (4) 

so that it is appropriate to approximate not V(p, z) 
but rather the matrix 

(5) 

For generality, consider the real N X M matrix 
Ai; with M ~ N. We wish to approximate Ai; by 
S~~) with 

tj 

R 

s:f) = ~fivgjV> R ~ M. (6) 
v=l 

As a criterion for the approximation we use the sum 
of squares 

(7) 
ij 

Setting the variation of J with respect to hv and g/ , 
respectively, to zero gives the equations for the set of 
f's and g's that minimizes J: 

! Ai;g;v = ! g;l'g;vhl" 
; ;1' 

! Aiihv = ! hl'hvg;v' (8) 
i iJl 
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! Ai;g;v = ! g;l'g;vhl" 
; ;1' 

! Aiihv = ! hl'hvg;v' (8) 
i iJl 
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Consider first the case where the f's and g's form 
orthogonal sets, so that 

.2 gil'giv = Gl'bl'.v> .2fil'!.v = Fl'bp • (9) 
i 

(It will be shown shortly that the most general case 
can be reduced to this.) Then Eqs. (8) give 

.2 Aiigiv = Gvfi.. .2 AufiV = Fvgjv> (10) 
i 

and there is no coupling between different values of Y. 

It follows from (10) that 

.2 AikAiigjv = FvGvgkv = .2 (AAhigjv> 
ij j 

(11) 

so that the vector j. is an eigenvector of the symmetric 
positive definite matrix AA, with eigenvalue Av = 
F,.Gv ~ 0, and gv is an eigenvector of AA belonging 
to the same eigenvalue Av. If Av is zero, then either j~ 
or gv is zero, and the term does not contribute to S(R). 

With (10), it follows that 
R R 

J = .2A7i - .2Av = Tr(AA) - .2Av. (12) 
ii v=l v=l 

Since A A has at most M eigenvalues Av , it follows that 
J = 0 for R = M; for R < M, the vectorsj. and gv 
belonging to the largest eigenvalues Av should be 
chosen so as to minimize J. 

Hence, given R ::::;; M, the procedure for finding 
S(R) is (a) find the R largest eigenvalues Ay of AA and 
call the corresponding normalized eigenvectors gy 
and (b) let 

fv = Agv' (13) 

Then 

(14) 

To show that the 1's and g's can be taken orthog­
onal, suppose the set off's and g's satisfies (8). Let 

Fl'v = .2fil"/';Y' GI'V =.2 gil'giV' (15) 

Then 

.2 AikAijgjy = .2 Aikhl'Gl'v = .2 gkpFpl'GI'V' 
ii il' PI' 

.2 Ak;Aufiv = .2fkpGpI'Fl'v' (16) 
ij p~ 

Call 

.2 Fpl'GI'Y = Npy, (17) 
I' 

and let the eigenvectors of Npy be Vvl with eigenvalues 
I: • 
~A· 

(18) 

Similarly, the eigenvectors wand eigenvalues 'f} of N 
satisfy 

(19) 

and, since it easily follows that 

('f}). - ~1').2 wp).vPI' = 0, (20) 
p 

the eigenvalues of Nand N are the same, and the 
w's and v's can be chosen so that 

Now let 

.2fivwv). = bi)., 
y 

Then (16) gives 

(21) 

(22) 

.2 (AA)kjd j). = ~).dk)" .2 (AAhA. = ~).ba, (23) 
j j 

so that the d). are mutually orthogonal by virtue of 
being eigenvectors of a symmetric matrix. Similarly, 
the b). are orthogonal. Finally, (21) and (22) give 

so that 
R 

S(R) = .2 badil'vv).wvl' = .2 badj). (25) 

as required. 
).1' )'~1 

The result is easily generalized to complex matrices, 
with transposes replaced by Hermitian adjoints. 

Similarly, for functions of two variables, the 
procedure described in (l3) and (14) and the pre­
ceding paragraph is changed as follows. Let A(x, y) 
be the function to be approximated. Let 

K(x, x') == J dyA(x, y)A(x', y). 

Then find the R largest eigenvalues Ay of K(x, x'), and 
let the corresponding eigenfunctions be fix): 

Let 

Then 

J K(x, x')fv(x') dx' = AJix). 

giy) = J A(x, y)f.(x) dx. 

R 
s(R)(x, y) = .2f.(x)g.(y) 

v=l 

(26) 

(27) 

(28) 

is the R-term separable approximation to A(x, y) that 
minimizes 

J = f[A(X, y) - S(R)(x, y)]2 dx dy. (29) 

The proof of the immediately preceding statements is 
completely analogous to that sketched for the matrix 
case. 

* Work done under the auspices of the U.S. Atomic Energy 
Commission. 
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The quantum field Hamiltonian expressed in terms of density and current density variables has been 
employed together with the equal-time commutation relations among these variables to find the ground 
state energy and the density fluctuation excitation spectrum of a system of interacting bosons at T = 0 oK. 
The approximation involved consists in assuming that the density fluctuation in space is small compared 
with the average density. The results easily obtained in the lowest-order approximation agree with those 
of Bogoliubov. However, in our treatment no condensation of particles in zero-momentum state is 
assumed or apparent. A connection between the present treatment and the quantum hydrodynamic 
approach to the irrotational flow of a Bose liquid has been made. 

1. INTRODUCTION 

For liquid He II near the absolute zero of tempera­
ture, it is a well-known fact that there exist density 
fluctuations associated with the ordinary sound 
waves.L2 To deal with such collective motions, it 
seems natural to think of the density variable as a 
proper quantum mechanical coordinate. Previous 
workers in this connection have used a number of 
methods, but none of which involved the density 
variable in a microscopic theory in the way as is 
presented here.1- 8 Following the recent suggestions of 
Dashen and Sharp,9 we have employed the density 
and the current density as quantum field coordinates 
together with their equal-time commutation relations 
to find the ground state energy and the excitation 
spectrum of an interacting Bose system, a system 
related to liquid Hen. 

This method is different from the usual field­
theoretic method in that we use the equal-time commu­
tation relations among the density and the current 
density components, instead of those among the 
canonical fields 'tjJ and 'tjJ+. Although the present 
commutation relations look rather complicated, it 
turns ou~ to be quite simple to get an approximate 
energy spectrum for the system on hand by (i) employ­
ing a functional representation for the Fourier 
components of the density and the current density 
operators and the state vectors of the quantum field 
for the system and (ii) assuming that the density fluc­
tuation in space is small compared with the average 
density. The results obtained in the lowest order 
approximation, which are valid for long wave vectors 
(k < 27Tjro, where ro = the average interparticle 
distance), agree with those of Bogoliubov.3 However, 
here no condensation of particles in zero-momentum 
state is assumed or apparent, and the excitation 
spectrum refers to the density fluctuations rather than 
to Bogoliubov's quasiparticles. 

The functional representation of the equal-time 
commutation relations in a representation in which 
the Fourier components of the density PkicO are 
diagonal is presented in Sec. 2. Section 3 is concerned 
with finding the energy spectrum of the system in the 
lowest-order approximation. A connection of the 
present treatment with the quantum hydrodynamic 
approach10 •1l to the problem will be made in Sec. 4. 
Finally in Sec. 5 there will be some relevant discus­
sions about the validity of the approximations used 
and the results in the low-density limit. 

In this paper, we shall adopt units such that the 
mass of the boson particles m = 1 and Ii = I, unless 
otherwise stated. 

2. FUNCTIONAL REPRESENTATION OF THE 
COMMUTATION RELATIONS 

Consider a system of N spinless bosons interacting 
through a two-body repulsive central potential and 
enclosed in a box of volume n. The usual quantum 
field Hamiltonian is 

H = t f d3xV'tjJ+(x). V'tjJ(x) 

+ t II d3xd3y'tjJ+(x)'tjJ+(Y)v(lx - yl)'tjJ(Y)'tjJ(x), 

(1) 

where the field operators 'tjJ and 'tjJ+ obey the usual 
equal-time canonical relations and V(lx - yl) is the 
two-body interacting potential. This Hamiltonian can 
be expressed in terms of the density P and current 
density j by using the identities derived from their 
definitions, 

and 

2[V'tjJ+(x)]'tjJ(X) = V p(x) - 2ij(x), 

2'tjJ+(x)[V'tjJ(x)] = V p(x) + 2ij(x), 

971 
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in the kinetic energy part and writing the potential 
energy in terms of p(x) and p(y). Thus one has 

H = tJd3X[V p(x) - 2ij(x)] • _1_ [V p(x) + 2ij(x)] 
p(x) 

+ t JJd3Xd3YP(x)V(IX - yl)p(y) - tNV(O), 

(2) 

where N = f d3x p(x) is the total number operator 
and V(O) is the interaction potential when x = y. (We 
have used N for an operator and for the total number 
of particles ofthe system.) The equal-time commutation 
relations among the densities and the current density 
components, which can be obtained by aid of the 
equal-time canonical commutations among 1p and 1p+, 

are given as 

[p(x), p(y)] = 0, (3) 

[p(x), j..(y)] = ip(y) (O~~ b(x - y») (4) 

and 

[j~(x), j p(y)] 

= -ij/X)(..E.... b(x - y») + ijiY)(..E... b(x - y»), 
OX~ oYP 

(5) 
with IX and fJ denoting Cartesian components. 

We are going to use the above commutation 
relations, instead of the usual canonical relations for 
1p and 1p+, together with the expression (2) for the 
Hamiltonian to find the energy spectrum of our 
system. One way to do this is to resort to a functional 
representation for the density and the current density 
operators and for the states of the system. It is found 
more convenient to deal with the Fourier components 
of the density and the current density. We present 
in this section only the functional representation12 of 
the' commutation relations (3)-(5), a representation 
in which the Fourier components of the density PkicO 

are diagonal, although they have complex eigenvalues. 
Let 

() 1 ~ ik.x 
P X = oif Pke , (6) 

1 fd3 () -ik.x Pk = Ol XP x e , (7) 

with the reality condition for p(x), P: = P-k' where 
the functions eik.

x obey periodic boundary conditions. 
In this Pk-representation, the functional representation 
for the PkicO operator is just the, c-number function 

Pk' Thus the commutation relation (3) is clearly satis­
fied. It is worthwhile to note that Po, the k = 0 
Fourier component, has a value by the definition 
Po = N/OJ and is related to the average density by 
Po = Ol(N/O) = OlPav. Similarly let 

. ( ) 1 ~. ik.x 
J~ x =! ""J",ke , o k 

. 1 Jd3 • ( ) -ik.x 
J~.k = Ol xJa. x e , 

and its Hermitian adjoint 

. t . 
Ja.,k = Ja.,-k' 

(8) 

(9) 

To find the proper expression for j~,k operator in 
Pk-representation, consider now the commutation 
relation (4). After putting in it the Fourier components 
for P and j~, and b(x) = (I/O) 2Q eiQ'X, one gets 

! l' [p eik'x j eil•Y] = J... l' q P eiQ.x+i(P-Q),Y (10) o k.l k 'a.l Of P'Q a. P • 

For fixed values of k and I, (10) yields, as q = k, 
p = k + I, 

(11) 

To be consistent with (11), it is easily seen that a 
proper functional representation for i.,l would be 

ja..l = - ;l ka.pk+1 ~ , (12) 
~~ bPk 

where b/bpk is a functional derivative with respect to 
the variable Pk>"O' Since the value ofk, although fixed, 
is still arbitrary, we get the following general functional 
representation for j~,l by summing over k on the right­
hand side of (12): 

. 1 ~ k b 
Ja.,l = - ! "" a.Pk+l - . o k bPk 

(13) 

As pointed out by Grodnik and Sharp,12 another term 
should be added to (13) in order to define an inner 
product on the functionals of Pk in such a way that 
p(x) and j(x) operators are Hermitian. Thus the 
proper general functional representation is 

J' - - J... ~ k P l.. - It P 
~,I - l "" ~ k+1 "2 ~ I' o k bPk 

(14) 

It is evident that the expression (14) for j~,l satisfies 
the commutation relation (10), The proof for the fact 
that it is also consistent with the commutation 
relation (5) is straightforward and hence omitted, 
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3. APPROXIMATE ENERGY SPECTRUM 

With the functional representations obtained above 
for Pk,,"O and Ja •l , we are in a position to solve a 
Schrodinger equation approximately, which contains 
wavefunctionals, acting just like ordinary wave­
functions for the states of the system. To get the 
approximate energy spectrum for the system, we shaH 
use an approximate Hamiltonian obtained from (2) 
and, likewise, an approximate functional representa­
tion for the current density componentJa •1 [Eq. (14)], 
which is consistent with the commutation algebra 
and with the approximate Hamiltonian to be used. 
The approximation consists in assuming that the 
density fluctuations in space are small compared with 
the average density Pav' i.e., 

jj(x) = p(x) - Pay « Pay (15) 
with 

f d3x jj(x) = 0 

as 

N = f d3
x p(x) = f d3

x Pav' (16) 

Using the Fourier series expansion for p(x) accord­
ing to (6), we have 

p(x) = ~(po + I Pkeik.
X

) 
11l[ k,oO 

+ 1 ~ ik.x 
= Pay 1 kPke , 

Qlrk,oO 

so that condition (15) is just 

_( ) J ~ ik.x // 
P X = t k Pke '" Pav' 11 k,oO 

By aid of a power series expansion, 

l/p(x) = (I/Pav){1 - jj(x)/Pav 

(17) 

(IS) 

+ [jj(x)f Pav]2 - ... } (19) 

and p(x) = Pay + jJ(x), one expands the Hamiltonian 
(2) in terms of jJ(x) , and retains terms up to the second 
order in jJ(x), V p(x) = V jJ(x), and j(x), thus obtaining 
an approximate Hamiltonian 

HI = _1_ fd 3X [V jJ(x) - 2ij(x)] • [V jJ(x) + 2ij(x)] 
Spay 

+ tffd3
X d3y p;vV(lx - yl) 

+ tffd3
X d3y jj(x)V(ix - yl)jJ(y) - tNV(O), 

(20) 

where the terms linear in jJ(x) in the potential energy 
have dropped out due to (16). Expressed in terms of 

Fourier components of the variables, HI in (20) 
becomes 

H~ = _1_ I (k2PkP_k + I (-2kaj2.kP-k 
8pav k,oO a 

+ 2kaP-da.k + 4ja.da.-k») 

+ ! I VkPkP-k + tJr~p!vQ - tNV(O), (21) 
k,oO 

when I/2Pavj~ is zero or can be neglected (this is so, in 
particular, for the low-lying states of the system, in 
which we are chiefly interested here), with Vo being 
the k = 0 Fourier component of the interaction 
potential V(lx - yl). In writing out (21), we have 
assumed that V(lxi) has a Fourier series expansion 

V(lxi) = .!. I Vkeik
•
X 

11 k 
(22) 

and 

Vk = f d3x V(lxl)e-ik.X
, (23) 

and neglected a kinetic energy term ct/ Pav)j~ of small 
magnitude, ,....., k2/N, for large N, io = (I/11!)J d3x x 
j(x), for those low-lying excited states with a finite 
nonzero total linear momentum or total current 
,.....,±k. 

An approximate functional representation for the 
current density component can be obtained by 
applying the condition for approximation (IS) to 
the commutation relation between p(x) and ja(Y) in 
(10). Keeping on the right-hand side only the terms 
associated with the large density Fourier component 
Po, one finds, instead of (11), 

(24) 

Since ja.-k,,"O is of the order of magnitude as UsP-k,,"O 
(us is the sound velocity), likalm would have a magni­
tude about Us IPkI 2

/ Pav' As in very long wavelength 
density oscillations, ka may be quite small, and 
accordingly IPkl would be very small compared with 
Pav' We note also that (24) is just one special case of 
the relation (11), when I = -kP From (24) one 
easily obtains an approximate functional representa­
tion for ja.-k, 

. k <5 
Ja.-k = - aPav fJPk' 

which is a special case of (12) and an approximation 
to the expression (13). Corresponding to (14), the 
proper approximate expression is 

(25) 
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To use expression (25), in the present approximation, 
implies that we treat the pairs of variables Pk""O and 
ja.I",,-k.O' and ja.k""O andjp.,,,,,o as commuting variables, 
as is seen to be true. This leads physically to the 
independence of each mode of density oscillations 
associated with a wave vector k.H To see whether (25) 
is consistent with the commutation relations among 
current density components, one can find an affirma­
tive answer approximately. This will be given in 
Appendix A. It is noted that (25) gives zero for ja.O, 
which is true for the ground state but not generally 
right for excited states. Thus we have to use the 
exact expression (14) for ja.O in general. If the expres­
sion (14) were used for allja.I' higher-order terms in 
/Pk""o/I Pay with smaller magnitudes would be produced 
in H{ (21). 

Now by aid of relations (24) and (25), or (25) alone, 
one can write the approximate Hamiltonian (21) in the 
following form: 

H~ = L [k
2
(tPk -!- - tpuv f- -!-) + tVkPkP-k] 

k#O UPk UP-k UPk 

+ tVop;yD - tNV(O). (26) 

In the Pk-representation used here, the state vectors 
of the quantum field for the system will be represented 
by wavefunctionals of Pk""O I and denoted by'Y{Pk}' 
Then one has a Schrodinger equation of the form 

(27) 

where E denotes an approximate energy eigenvalue 
of the system. By inspection of the terms in H{ (26), 
it is easy to see that one eigenfunctional is of the 
Gaussian form usually used for the ground state of a 
simple harmonic oscillator. Thus we employ as a trial 
wavefunctional for the ground state here the follow­
ing: 

(28) 

In (28) A is a normalization constant and Ak denotes 
an unknown function of the wave vector k, to be 
determined through Eq. (27). We find, for 'Yo to be an 
eigenfunctional, 

H~'YO{Pk} 

= L~}2[p"yAk - (2PayA~ + Ak - 2~2 Vk)PkP-k] 

+ ! Vop~\·D - i NV(O) )'YO{Pk} 

= Eo'Yo{Pk}' (29) 

with 

Eo = L k 2PavAk + t Vop!v D - !NV(O), (30) 

if the coefficient of PkP-k'YO vanishes, i.e., 

2A~Pav + Ak - ~ Vk = O. 
2k 

This equation (31) gives 

We choose 

Ak = -1 ± (l + 4Pay Vk/k2)! 

4p,,\. 

(31) 

(32) 

(33) 

in order for the wavefunctional 'YO{Pk} [(28)] to have 
the meaning of a probability amplitude for each Pk;"O 

variable. (1 + 4pa\· Vk /k 2 is assumed to be a positive 
real number for a central repulsive interaction poten­
tial here.) With this value for Ak, the corresponding 
energy is, by (30), 

Eo = t Vop!v D 

- t L [tk 2 + PMYk - k(!k 2 + PavVk)!], (34) 
k*O 

where we have written t· Lk# 0 Pay Vk for tNV(O) , 
thereby neglecting a term tPaY Vo , small by a factor 
liN compared with the first term. As will be seen later, 
the energy for any low-lying state of the approximate 
Hamiltonian H{ is greater than Eo in (34) and so is the 
approximate ground state energy for the system. This 
result agrees with Bogoliubov's. 

We would just like to mention in passing that if 
one tried to determine the above-mentioned Ak by 
minimizing Eo,15 one would find 

, I _ 1 -I( V. /k2)! 
II.k - '[PaY Pay k • 

This would lead to a higher value for Eo, since, 
assuming Vk > 0 for every k, we have 

-1 + (1 + 4PavVklk2)! 1 2 ! 

4 
< - (PayVk/k) . 

Pay 2Pay 

It is to be noted that, in obtaining Eo in (34), we 
have never assumed condensation of particles in the 
free-particle zero-momentum state, nor is it apparent 
in our treatment. 

To get the excitation spectrum formally, one simple 
way is to use the Heisenberg equation of motion for 
p(x, t). Here, for clarity's sake, we indicate explicitly 
the t parameter for operators. 

One has 
p(x, t) = i[H, p(x, t)] 

= -div j(x, t), 

(35) 

(36) 
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which is the equation of continuity, obtained through 
using the equal-time commutation relations (3) and 
(4). 

The H appearing above is the exact Hamiltonian of 
the system. Since we have been dealing with the 
approximate Hamiltonian H1 and thus wish to find 
an approximate excitation spectrum, we shall replace 
H by H1 [Eq. (20)]. Then (35) becomes an approximate 
relation 

(l(x, t) = i[H1' p(x, t)], (37) 

which yields the continuity equation 

(l(x, t) = -div j(x, t) (38) 

approximately, if one neglects smaller terms nonlinear 
in j and j5 = P - Pa\" the density fluctuation. [Note 
(l(x, t) = ji(x, t).] Fourier-analyzing (37) and (38) 
with respect to x and assuming that PktO and j"kcfo 
have a t dependence like eiwt

, one finds 

wpit) = [H{, Pk(t)], k ¥- 0, (39) 

WPk(t) = - L k,ja,k(t), (40) 
a 

where (I) denotes a frequency and H{ takes the form 
(21).16 Insertion into (39) of the approximate ground 
state wavefunctional 'f'O{Pk(t)} [Eq. (28)], with Ak given 
by (33), leads to 

(J)Pk'f'O{Pk} = (H{ - EO)Pk'f'o{Pk}, (41) 

that 

This Ek agrees with Bogoliubov's result3 for the 
excitation spectrum which he obtained, however, 
for his quasiparticles. We note also that the spectrum 
(44) and the set of eigenfunctionals If'O{Pk}' pk'f' ° , 
PkPI *k'f' 0, etc., for the low states of the system are 
essentially compatible with the results of Bohm and 
Salt,S using their collective coordinates (PkP~k'f' 0 for 
any k being not an eigenfunctional). 

4. CONNECTION WITH THE QUANTUM 
HYDRODYNAMIC APPROACH 

As is well known, the above density fluctuation 
excitation spectrum agrees also essentially (only for 
very small k) with results of the quantum hydrody­
namic approach to the irrotational motions of a Bose 
liquid, as used by Kronig and ThellunglO and Lon­
don.lo If we could take the quantum field Hamiltonian 
expressed in terms of P and j in (2) to describe the 
hydrodynamic system of the Bose liquid, as done by 
Yee,n and tried to find the energy spectrum for the 
irrotational flow within the same kind of approxima­
tion, using the commutation rules common to the 
hydrodynamic methods, i.e., 

when H{ assumes the approximate form (26). So 
Pk\Yo{pd is the approximate wavefunctional for an 
excited state of the system, with the corresponding and 
excitation energy denoted by 

[p(x), p(y)] = 0, 

[4>(x), 4>(y)] = 0, 

[p(x), 4>(y)] = -io(x - y), 

( 45) 

(42) where 4> is the velocity scalar potential, the resultsl7 

would be identical to ours. The main difference 
[it is easy to verify that this excited state has a total 
linear momentum = n~(jo) = -k, using (14).] This 
excitation energy is determined by aid of (40). Inserting 
\YO{Pk} also into (40) and using the approximate 
functional representation for ja,k/ 0 like (25), we get 

(J)Pklf'O{Pk} = - L k;(pu\. _0_ - ~Pk)'f'O{Pk} 
a OP~k 

= 2k2(Pu,Ak Pk + !Pk)'f'O{Pk}' (43) 

Hence the excitation energy is given by 

Ek = 2k\p,,\.Ak + t) = k(tk 2 + Pay Vk)~' (44) 

Of course, it is also easy to get this excitation spectrum 
here by noting that Pk'f'O{Pk} is an eigenfunctional of 
the SchrOdinger equation (27) with an energy Ek , so 

between our spectrum and those of Kronig and 
Thellung, and London, then comes from the fact that 
they started with a classical Lagrangian for the liquid 
while we used a quantum field Hamiltonian, which 
contains explicitly the two-bOdy interaction potential 
and some terms of quantum origin. This point has 
also been noted by Yee. To see more clearly why our 
present microscopic treatment is equivalent to the 
quantum hydrodynamic approach to the irrotational 
flow, we observe two points. The first point is obvious: 
that both treatments employ the same kind of approxi­
mation-that the amplitudes of density oscillations 
are small compared with the average density. Secondly, 
the commutation relations used here to derive the 
above results can be easily shown to be equivalent to 
those relations (45), provided we assume also the 
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existence of a velocity potential rp(x), such that 

jix) = -Pay ~ rp(x). (46) 
ax" 

Let 

So in terms of Fourier components, (46) becomes 

ja,k = -ikaPaAk> k ~ 0, (47) 

which actually corresponds to the approximate 
functional expression for ja,k' i,e., 

ja,k = (kaPav -!- -lkapk), (48) 
P-k 

Using Fourier components, we change the relations 
(45) into 

and k::;l: 0 

[Pk' PI] = 0, 

[rpk' rptl = 0, (49) 

As is seen easily, the first relation in (49) holds in 
both treatments. This is also true for the second 
relation: As we mentioned before, the use of the 
approximate functional expression like (48) for ja,k 
implies the relation 

(50) 

which yields by virtue of (47) just the second relation 
in (49). As to the third relation, we have in our case 
the commutation relation (24), i.e., 

Due to (47), this leads to the third relation we want. 
In accordance with the commutation algebra (49), 
if we give rp-k a functional representation in our Pk­
representation, this will be, after adding a term 
corresponding to - lka{3k in ja,k , 

rp-k = {~~k - tP-k/Pav) , k ~ 0 (51) 

[although blbpk is not well defined (Ref, 12)], so that 
(47) goes to (48), as previously stated, This also 
indicates a formal connection between the two methods. 

It appears that the above connection cannot be 
made if general expressions like 

)' - - -.L ~ m P ~ - lk P a,k - ! k a m+k 2 a k 
Q m bpm 

are used, for then obviously the relation (50) is no 
longer valid. However, a formal connection still 
exists even in such a case if we use Yee's hydrodynamic 
approach and define the velocity V by 

j(x) = t[p(x)V(x) + V(x)p(X)],l1 

We shall prove the last statement in Appendix B, 
No matter whether there exists the above connection 

or not, these approximate or general functional 
expressions for ja,k together with the Pk,!,O functions 
for Pk"cO operators in the Pk-representation can be 
used to investigate some hydrodynamic motions of a 
quantum liquid, since they depend only on the basic 
commutation relations among the density and the 
current density (3)-(5), which are valid for both 
microscopic and macroscopic descriptions of the 
liquid. 

5. DISCUSSION 

Let us now examine the validity of the present 
treatment. The following considerations show that 
our results hold for the low density limit with a short­
range repulsive potential. Consider the main approxi­
mation involved in the condition (18), 

p(x) « Pay 

for the ground state, That is equivalent to 

«p(X»2) « P;v, (52) 

where the average ( ) is taken over the approximate 
ground state wavefunctional 'YO{Pk} [Eq. (28)], Equa­
tion (52) may be expressed as 

1 ~ ( i(k+O'x) 1 ~ ( ) // 2 
n £., PkPle = n k PkP-k "Pav 
U k,."O U k"O 

(53) 

since 

(PkPI) = b_k ,I(PkP_k).15 

Changing the summation into integration by 
~k ---+ [Qj(27T)3] f d3k, we have (E being an arbitrarily 
small vector) 

.-1 .. -i d3k( ) - _1 i k
2 

dk 2 (54) 
(2 )3 PkP-k - 2 2 41« Pay 

1T f-+O '1T E-O ILk 

with (33) for Ak , 

A = _1 [(k2 + P v.)! - ~J' 
k 2Pavk 4 av k 2 

We observe that physically there exists a minimum 
wavelength of the density oscillations with a magnitude 
about the average interparticle distance, '0 ('" p;;"l), so 
we shall take a cutoff kc for the upper integration 
limit. The actual value of kc will be estimated from 
the above inequality. We shall assume that,for those 
small wave vectors k :::;; kc of interest here, the Fourier 
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component of the interaction potential Vk may be 
replaced by Vo, the constant k = 0 Fourier com­
ponent. As usual, this Vo may be related to a scattering 
amplitude a by 

(55) 

where m is understood to be the mass of a Bose 
particle. With the factors in Ii and m inserted and (55) 
substituted into Ak , one finds 

1 [(k2 )! kJ A = -- - + 417ap - - . 
k 2 k 4 av 2 Pay 

Then (54) becomes 

_1_ fke k3 dk « 1. 
2Pav 172 Jo -k + 2(tk2 + 417aPav)! 

For our purpose here, it seems legitimate to 
consider, instead, a simplified integral 

_1_ P;; fk c 
k

3 
dk « 1, 

2172 Jo (k2 + 1617aPav)! - kc 
or just 

_1_ P;; fk c 
k

3 
dk « 1, 

2172 Jo (k2 + 1617aPav)! - 4(17aPav)! 

if 

k~ ,....., 1617apav or r = 1617aPav/k~""" 1, 

and, if r« 1, 

1 ( f4
(1rap av)l k3 dk 

2172 P;; Jo (k2 + 1617aPav)! - 4(17aPav)! 

(56) 

+ fk e 

t k
4
dk)« 1. (57) 

J4(1rapav) 817apav 

In the first case, r ......., 1, (56) can be written as 

where 

32 (3 )1[2 + 3 cos IPc 5J ! a Pay - - «1, 
17 6 COS3IPc 6 

(58) 

(58) is easily seen to hold if (a3Pav)! « 1, which is just 
a usual condition for the low density limit with a 
short-range interaction potential.4.l8 In the second 
case, r « 1, (57) becomes after integration 

32 3 ![2.)2 IJ k~ ~ ! (a Pay) - - - + [1 - r ] « 1. 
17 3 6 80173ap;v 

~59) 

Let us consider the second term first. It would be 
« 1, if 

or 

(aPav)~ « k~/104 « ap!v. (60) 

This latter inequality expression implies also the 
condition (a3Pav)! « 1, which makes the first term in 
(59) again small compared with unity. Thus with (60) 
fullfilled, our main approximation would be valid. 
[E.g., one could choose k~ = 102ap!v with (a3Pav)! « 
10-2.] 

Under the condition (a3Pav)!« 10-2 with the 
chosen cutoff value for kc' one can express the 
approximate ground state energy in (34) as a series in 
(a3Pav)t. However, in order to show which terms in 
the series do not depend on the chosen value of kc , 
we expand the terms as a power series in the parameter 
r, leaving kc as if not fixed. We have from (34) 

Eo/Q = (1i2/2m) 

{ 

2 1 ike 3 [k2 X 417apav - --3 d k - + 417aPav 
(217) 0 2 

_ (~2 + 417apavk2)tJ). (61) 

After simple integrations, the second and the third 
terms combine to give 

(- k~/2172)(1/10 + r/12). (62) 

The last term in (61) can also be easily integrated out 
to be 

1 ~[3-5COS2IPc 2J 
-9 X 512(17apav) 5 + -, (63) 
217- 15 cos IPc 15 

where cos IPc has been given in (58). If we expand (63) 
with respect to r and keep terms up to the tth power, 
we find as an approximation to (63) 

+k~/2172(1/1O + r/12 - r2/16 + r~/15 ... ). (64) 

Substituting (62) and (64) into (61) and replacing r by 
1617aPav/k~, one obtains 

Eo 2171i2 
2 

-= --apav n m 

[
2 128 3 t (a

2PaV)J X 1 - - akc + --! (a Pay) - 0 -- . 
17 1517 kc 

(65) 

We have noticed from the above that the cancella­
tions of the second and the third terms by part of the 
last integral in (61), as well as the first and the third 
terms in (65), do not depend on the chosen value of 
kc and thus that they are reliable. However, the 
second term and the remaining terms in the parenthe­
ses of (65), being of order (a3Pay)~ and at least 
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O[(a3Pav)l] respectively, do depend on the chosen kc 
value, so that the coefficients associated with them are 
inaccurate. Actually this second term is reminiscent 
of the divergent term when kc -- 00 as. discussed by 
Lee, Huang, and Yang,4 and has to be dropped out 
for a correct treatment of the interaction potential. 
As to the inaccuracy of the coefficients just mentioned, 
there is another source here, i.e., that we have not used 
the general functional expression forj,x._k' which would 
give some corrections. These corrections will be worked 
out and published elsewhere. In the present treatment, 
we can not get the logarithmic term of (a3Pav), as 
calculated by Hugenholtz and Pines 7 and by WU.19 

As far as the reliable terms in (65) are concerned, they 
are in agreement with those of Lee and Yang20 and 
Ref. 4. 

It is to be emphasized that our main approximation 
([p(x»)2) «P:v would break down for k» (102 X 

ap!v)t as previously estimated.21 If the kc value could 
serve as an order-of-magnitude mark where the 
collective oscillations end, as in the case with k~ ,...,.,. 
167Tapav, then, for k » kc, Pk refers essentially to the 
individual particle behaviors, and the present approxi­
mation is not suitable for studying those with k 5 » 
102 X ap!v. However such a meaning for kc is in­
applicable to the case where 167Tapav « k~; for those 
k values such that 167Tapav« k 2 ~ k~, the density 
excitation spectrum is already particlelike. It is not 
proper then to talk about collective oscillations. 

Finally, the present method of employing the 
functional representations of Pk#O and ja.k in the Pk­
representation is useful for both Bose and Fermi 
systems since the same set of commutation rules for 
density and current density components exist. So it 
can be applied to study interacting Fermi systems, if 
we extend it to take care of the spin and Fermi 
statistics of the particles, as done, e.g., by Grodnik 
and Sharp22 recently. This application will be made 
later on. 
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APPENDIX A 

We have wanted to see whether the approximate 
functionalrepresentation,ja._k#o = -ka(Pav(~/~Pk) -
!P-k) [Eq. (25)], is approximately consistent with the 
commutation relation among the current density 

components, i.e., Eq. (5), 

[ja(x), jP(y)] 

= -ijp(X)(~ b(x - y») + ijiY)(-.L b(x - Y») 
oXa oYp 

or its Fourier transform 

[ja.k,jp.l] = ~! (-lajp.k+1 + kpja.k+I)' (AI) 

Applying (25) to the left-hand side of (AI), one 
easily finds zero for any nonzero k and I values. But 
the direct use of (25) for the right-hand side will give 
nonzero generally if k ¥: ±l, i.e., 

~ (kakp - lalp) (Pav _b_ - ipk+I)' (A2) 
o bp_k_1 

So there seems to be an inconsistency with the commu­
tation relation (AI). However, those nonzero terms 
will contribute small magnitudes when operating on a 
state functional and may be neglected through the 
following considerations. Let us find out how (A2) 
comes about by employing the general functional 
expression (14) for the current density components 
in the commutator [ja.k ,jp . .l. We find, by separating 
the large terms from the small terms in ja.k and h.I' 
for k ¥: ±l, 

ja.d 13. 1 = [( kaPav b:_
k 

- ikaPk) 

I b ] -! L maPm+k-o m*-k bpm 

X [(lpPav b:_
1 

- i1pPI) 

- ~ L npPn+1 ~J (A3) o 0*-1 bpn 

- k I p2 -~- _b _ _ 1 kip P _b_ 
- a 13 av 2" a 13 av I 

bp_k (jP_1 ~P-k 
1 

-! kaPav L np o n*-I 

( 
b b b) 

X ~-k.n+1 -;- + PlI+1 -~- -;-
UPn UP_k UPn 

- ik.lpPavPk ~ + !kalpPkPI 
~P-I 

1 (j + --! kaPk 2 nppo+l-
20 n*-I bpn 
1 (j b 

- -1 IpPav L maPm+k - -
0 2 m*-k ~Pm ~P_I 

+ ~ L maPm+k(~m.l/p) + IpPI-~-) 
20 m*-k (jPm 

+ ~ L maPm+k ~ ( 2 npPn+I~)' o m*-k ~Pm 0*-1 ~Pn 
(A4) 
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It is noted here that the third and the eighth terms in 
(A4) give 

~(kikp + lfJ)Pav _15 - + !l~lppk+l)' (AS) 
o bp-k_l 

Similarly, 

. . _ k 2 _15 __ 15_ it k _15_ 
.1P.IJ~.k - tp ~Pay 15 15 - 2 fJ ~PaYPk 15 

P-l P-k P-l 

Again the third and the eighth terms in (A6) are of 
interest, and give 

We see then that it is the difference (AS) - (A 7) 
which leads to the nonzero terms in (A2). Since these 
terms (AS) and (A 7) are both small compared with the 
leading terms in the product 

as seen clear from (A3), and since we have implicitly 
neglected them when we apply the approximate 
expression (25) to [Ja.k ,jfJ.l], it is reasonable and also 
consistent to neglect (A2). One may view this neglec­
tion in the same sense of approximation as Bogoliubov 
took [ao, atl = 0 for bosons3 near T = 0 OK, where 
ao and at denote, respectively, destruction and creation 
operators for the free-particle zero-momentum state. 
Thus within this approximation the approximate 
expression (25) leads to [j~.k,jp.ll = 0, which is 
consistent with the commutation relation (AI). 

APPENDIX B 

As was shown by Vee, the commutation relation (4) 
may lead to 

[p(x), Va(y)l = i(~ b(x - y»). (Bl) 
aYa 

In terms of Fourier components, (Bl) becomes 

if one assumes 

V( ) 1 '" V' ik·Y 
~ Y = 0 1 f ~.ke , 

and the relation defining V yields 

j~.k = ~ L [PkHVa.-q + Va.-qPkHl. 
20 q 

For any k, we get, by aid of (B2), 

but we also have here 

(B2) 

(B3) 

(B4) 

j~.k = - ~ L m~Pm+k --.L - !kaPk' (BS) 
o m bpm 

To make these two expressions identical, one can 
give V~._q a formal functional expression in our 
Pk-representation as (assuming the zeroth Fourier 
component of the velocity, Vo = 0) 

V b 1 fd3 ( i() a (») iq·x ~._q = -q~ - - --! x P- x - P x e , 
bpq 2iO ax~ 

q ¥= 0, (B6) 

with p(x) expressed in terms of Pk' although it 
involves a not well-defined operator blbpq and a 
singular function 11 p(x). It can be easily verified that 
substitution of (B6) into (B4) will give (BS). It is also 
evident that V~._q given by (B6) is consistent with the 
relation (B2) and the commutation relation among the 
current density components, since the latter is satisfied 
by the general expression for j~.k' (B6) implies the 
existence of a formal velocity scalar potential operator 
cp, for 

(B7) 

To show the truth of (B7), clearly we need only to 
examine the second term of V,.._q in (B6). On inte­
grating by parts, this term can be changed to 

+ ~ fd 3x log p(x) ~ eiq
•
X 

2iO ax~ 

= ...!k fd 3X log p(x)eiq.X, (B8) 
201 
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as the other integral vanishes due to the periodic 
boundary conditions used. Thus terms like (B8) will 
satisfy (B7). One may then define ¢q formally by 

Va._q = jq~¢_Q' q::;t= 0, (B9) 
i.e., 

or 

= j (~ - _1_. Jd3X log p(x)eiQ
•
X
). 

bpq 20! 
(Bll) 

[When 1/ p(x) is approximated by 1/ Pav, (BIO) becomes 
¢_q = j(b/bpq - !P-q/Pa,.) as given by (51)in the text.] 

Substituting (B9) into (B2), one finds 

[Pk' ¢-k] = -i, k::;t= 0. 

(B 10) or (B 11) leads to 

(k, I ::;t= 0) [1>t, ¢tl = O. 

(B12) 

(B13) 

It is not difficult to check the consistency of (B13) 
with the commutation relation among ja.k and h.I' 
i.e., (AI). 

We see that (BI2) and (B13) are just two of the 
relations in (49) in the text, which need to be proved. 
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The real and imaginary parts of the lattice Green's functions for the simple cubic (actually the tetra­
gonal), body-centered cubic, and face-centered cubic lattices, at the variable from -00 to +00, are 
expressed as a sum of simple integrals of the complete elliptic integral of the first kind. The results of the 
numerical calculations obtained with the aid of the formulas are shown by graphs. 

1. INTRODUCTION! 

In the present part of this series of works, we present 
formulas useful for the numerical calculations of the 
lattice Green's functions for the cubic lattices: 

1 IU IU IU 1 G(t) = ---; dx dy dz , (1.1) 
1T 0 0 0 t - w(x, y, z) 

where w(x, y,z) is 

w(x,y,z) = ycosx + cosy + cosz, 

w(x, y, z) = cos x cos y cos z, 

(1.2) 

0.3) 

w(x, y, z) = cos y cos z + cos z cos x + cos x cos y, 

(1.4) 

for the simple cubic (sc), body-centered cubic (bee), 
and face-centered cubic (fcc) lattices, respectively. 
The parameter y is introduced in (1.2) for generality, 
as it causes no additional trouble in the formulation. 
The function defined by (Ll) is real at t Z 2 + y, 
t z 1, and t Z 3, respectively, for the sc, bcc, and fcc 
lattices. For this region, the function GCt) was ex­
pressed as an integral of the complete elliptic integral 
of the first kind,2.3 and the expressions were used to 
make an extensive table of the function. 3 

W~ shall consider the function defined by (1.1) as a 
complex function of the complex variable t. The 
function is analytic on the whole complex t plane, 
excluding the real axis from - (2 + y) to 2 + y (sc) , 
from -1 to 1 (bcc), and from -1 to 3 (fcc). Hence an 
expression of the function G(t) on the whole t plane 
can be attained by the procedure of analytic continu­
ation from the above-mentioned expressions in terms 
of the complete elliptic integral. We first prepare the 
expressions for the complete elliptic integral of the 
first kind and its analytic continuation at the values of 
modulus on the real and imaginary axis in terms of the 
complete elliptic integral between zero and unity. 
Then we use them to express the real and imaginary 

parts of G(s - if) at all the real values of s from - 00 

to + 00, where e is an infinitesimal positive number. 
The resulting expressions have the form of a sum of 
simple integrals of the complete elliptic integral of the 
first kind. 

An extensive table of the real and imaginary parts of 
G(s - ie) for - 00 < s < 00 is in preparation. The 
graphs of the curves are given. 

2. THE COMPLETE ELLIPTIC INTEGRAL 
OF THE FIRST KIND AS A COMPLEX 

FUNCTION OF THE MODULUS 

The complete elliptic integral of the first kind K(k) 
as a complex function of the complex modulus k is 
defined by4 

[!1T 
K(k) = Jo dO(1 - k2 sin 2 O)-!. (2.1) 

This function is an even function of k and K(k*) = 
K(k)*. As a consequence, K(k) is real when k is pure 
imaginary. The expansion in powers of k and k' = 
(1 - k2)! are given, respectively, as follows: 

K(k) = ~ I (t)n(t)n en, 
2 ,,~O n! n! 

(2.2) 

K(k) = - ~ K(k') In k' 
1T 

+Im~(t;n [1p(n + 1) - 1p(n + t)]k'2n, 
71=0 n. n. 

where 
(2.3) 

mn == rCn + t)/rm, 1p(z) = r'(z)/r(z). 

The function K(k) has branch points at k = ± I. The 
expressions (2.1 )-(2.3) are analytic on the Riemann 
surface excluding the branch cuts connecting + 1 and 
+ 00 and -1 and - 00, respectively, on the real axis. 
We call this part of the Riemann surface sheet I. In 
the following calculation, we need the function above 

981 
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(28) 

(26) (22 ) (2.5) 

-I o .(24) 

(2 9) 

FIG. I. Complex k plane. The bold solid line between -I and I 
denotes the branch cut of the complete elliptic integral of the first 
kind. The numbers of the equation useful at each portion near the 
axes are referred. In this and the following figures, the upper half­
plane represents sheet I and the right lower quarter of the plane, 
sheet II. 

the real axis and its analytic continuation to the lower 
half-plane through the cut connecting + I and + 00. 

The latter part of the Riemann surface is denoted as 
II. Sheet I above the real axis and sheet II are written 
in the same figure by drawing the branch cut con­
necting -I and + I, as in Fig. I. The expressions 
(2. 1)-(2.3) are valid on sheet I as stated above. The 
analytic continuation of the function K(k) to sheet 
II is attained with the aid of the expansion (2.3). One 
can reach from a point k on sheet I to the same point 
k on sheet II by encircling the unity clockwise. If 
WI < I, the expression (2.3) is used. By this process, 
k' changes to k' exp (-iTT). As a result, one obtains 

K(II)(k) = K(k) + 2iK((l - k2)!), (2.4) 

when Ik'l < l. Here superscript (II) denotes sheet II. 
This expression is analytically continued to the whole 
sheet II. The function on the real axis k = kR + iE, 
where kR > I and E ~ 0, is given by the one at k < I 
with the aid of the formula4 

K(k) = Ic1[K(k-l) + iK(k-l(k2 - I)!)], (2.5) 

which is valid when 1m k 2 > 0. From the definition 
(2.1) or (2.2), one sees that the value of K(k) at 
k = - kR + ik I is the complex conjugate of the value 
at k = kR + ikr . This implies that the value at 
k = kR + iE, where kg < -1 and E ~ 0, is given by 

K(k) = Ikl-1[K(k-1) - iK(k-1(k2 - I)!)]. (2.6) 

The values on the imaginary axis is achieved with the 
aid of the formula4 

K(ik1/(1 - k~)!) = (1 - kDlK(k1). (2.7) 

By substituting 

kl = kr/(1 + ki)!, 
one obtains 

K(ikI) = (1 + k~r!K(kr/(l + ki)!). (2.8) 

The corresponding expression for sheet II is obtained 
by putting k = -ikI + E, fi ~ 0, in (2.4) and then 

using (2.8) and (2.5): 

K(II)( -ikI + E) 

= K( -ikI + E) + 2iK«(1 + k~)! + iE) 

= -(1 + k~r![K(kI/(l + k~)!) - 2iK«1 + kir!)). 

(2.9) 

It should be remembered that the left-hand sides of 
(2.4) and (2.9) refer to the analytic continuation of the 
function K(k). But all the functions on the right-hand 
sides are referred to the original function K(k). One 
sees from (2.4) and (2.9) that the analytically continued 
function has a branch point at the origin. All equa­
tions (2.5), (2.6), (2.8), and (2.9) show that the infinity 
is a branch point. In Fig. 1 and in the following 
figures, these branch points are connected along the 
negative portion of the imaginary axis. Hence sheet II 
in these figures is restricted to the right lower quarter 
of the complex k plane. 

3. SIMPLE CUBIC OR TETRAGONAL LATTICE 

The Green's function defined by (1.1) with (1.2) is 
real at t > 2 + y and has been expressed in terms of 
the complete elliptic integral of the first kind K(k) as 
follows3 : 

1 1" G(t) = 2 dx kK(k), 
TT 0 

(3.1) 

where 
k = 2/(t - y cos x). (3.2) 

We note that this relation (3.1) is valid on the whole 
complex t plane. 

When t > 2 + y, we have 0< k < 1, and Eq. (3.1) 
is used for the numerical calculations [cf., Fig. 2(i)]. 

(i) (ii) 

0\ 
8 C A 

-I -I 

(iii) 

I 8 A 

-I 
°1 

I 8 C l' 
I iii') 

0 A 
-I 01 

oj 
8 

° -j 

liv) 
0 A -. 

EA 

0\ 
8 C 

° .j 1 

liv') 
0 

FIG. 2. Complex k plane for the simple cubic lattice. The k occur­
ring in the integral (3.1) takes on values on the line connecting the 
points labeled by A and B. A corresponds to the value at x = 0, 
where k = 2/(s - y) + iE. B is the value at x = 1T, where k = 
2/(5 + y) + iE. (i) corresponds to the case s> 2 + y. (ii), (iii), 
(iii'), (iv), and (iv') correspond to the subdivisions for the cases of 
Os Y S I, I S Y S 2, and 2 S y S 00. In case (ii), (iii'), or (iv'), 
e, where k = I + iE, is taken at x = cos-1 [(s - 2)/y]. In case (iii'), 
(iv), or (iv'), D, where k = +ioo, is taken at x = cos·1 (s/y). In 
case (iv'), E, where k = -I + iE, is taken at x = cos-1 [(s + 2)/y]. 
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We put t = s - iE, where s is a real variable and E 
is an infinitesimal positive number. G(s - iE) is 
complex at -(2 + y) < s < 2 + y. We denote the 
real and imaginary parts as GR(s) and Gr(s), respec­
tively: 

G(s - iE) = GR(s) + iGr(s). (3.3) 

For the sc case, GR(s) is an odd function ofs and Gr(s) 
is an even function: 

GH ( -s) = -GR(s), Gr ( -s) = Gr(s). (3.4) 

This fact can, for instance, be confirmed easily by the 
definition (1.1) with (1.2). Hence we have only to 
consider the range 0 < s < 2 + y in the following. 
The formulas are given for the three cases 0 ~ y ~ 1, 
1 ~ Y ~ 2, and 2 ~ y, separately. 

A. 0 ~ y ~ 1 
~ 

We shall first assume that 0 ~ y ~ 1. Then the 
range 0 ~ s ~ 2 + y is subdivided into three regions 
as follows: 

(ii) 2 - y < s < 2 + y, 
(iii) y < s < 2 - y, 
(iv) 0 < s < y. 

The values of k occurring in the integral (3.1) are 
shown in Fig. 2 for the respective cases. For the 
region k > 1, one uses the formula (2.5). Namely, it 
is used for 0 < x < cos-1 [(s - 2)/y] in case (ii). As 
a result, one obtains 

1 5C08
-

1

[(S-2)/Y] (1) 
G (s) = - dx K -

It 7r2 0 k 

I (" 
+ 7r2 JcoS-1[(S_2)/yjdx kK(k), (3.5) 

1 rC08- ' [(S-2)1t] (k2 - l)!) 
Gr(s) = -; I, dx K . (3.6) 

7r .0 k 
For case (iii), one simply has 

1 i" (1) GR(s) = 7r2 0 dx K k ' (3.7) 

1 

Gr(s) = ~2 f dx K«k
2 

~ l Y} (3.8) 

by (2.5). For case (iv), one uses the formulas (2.6) 
when k < -I, namely when 0 < x < cos-1 (sly), 
and obtains 

1 iCOS-l(8h) ( 1 ) 
GR(s) = - - dx K -

7r
2 

0 Ikl 

(3.9) 

(3.10) 

B.l~y~2 

When 1 ~ y ~ 2, the range 0 ~ s ~ 2 + Y is 
subdivided as follows: 

(ii) y < s < 2 + y, 
(iii') 2 - Y < s < y, 
(iv) 0 < s < 2 - y. 

For the cases (ii) and (iv), the values of k are restricted 
to the same regions as the corresponding cases of 
o ~ y ~ 1, and one obtains the same expressions 
(3.5), (3.6) and (3.9), (3.10), respectively. The values 
of k for the case (iii') are shown in Fig. 2(iii'). Now 
we have 

1 iCOS-1(8IY) ( 1 ) 
GR(s) = - -; dx K -

7r 0 Ikl 1 JcoS-
1
[(S-2)h] (1) + - dxK -

7r
2 

C08- 1(sly) k 

1 J" + -; dx kK(k), 
7r cos -1[(S_2)/y] 

1 5COS-1
[(S-2)/Y] (k2 

- I)!) 
G1(s) = -.; dx K . 

7r" 0 k 

C. 2 ~ Y 

The subdivision for this case is 

(ii) y < s < 2 + y, 
(iii') y - 2 < s < y, 
(iv') 0 < s < y - 2. 

(3.11 ) 

(3.12) 

For the cases (ii) and (iii'), we have Eqs. (3.5) and (3.6) 
and Eqs. (3.11) and (3.12), respectively. The values of 
k for the case (iv') are shown by Fig. 2(iv'). The 
function K(k + iE) at -1 < k < 0 is equal to 
K(lkl + iE), and hence one has 

1 5COS-1
[(S+2)/Y] 

GR(s) = - -; dx Ikl K(lkl) 
7r 0 

1 fC08-1(8IY) ( 1 ) 
- - dxK -

7r
2 

C08-1[(s+2)/y] Ikl 
1 fC08

-
1

[(S-2)/Y] (1) + - dxK -
7r

2 
C08-1(S/y) k 

1 f" + ----; dx kK(k), 
7r" CU8-1[(s-2)/y] 

(3.13) 

1 5C08
-

1
[(S-2)/Y] (k2 

- l)!) 
Gr(s) = 2 dx K . (3.14) 

7r C08-1[(.'+2)/y] k 

4. BODY-CENTERED CUBIC LATTICE 

The Green's function at t > 1 is real and is given 
by3 

4 l!r. G(t) = -2 dx K(k), 
7r t 0 

(4.1) 
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-I 

(ii) 0 < 5 <I 

-I 

where 

+==' 
B c A 

o 

k = cos (x)/t. 

FIG. 3. Complex k 
plane for the bce lat­
tice. Point A corre­
sponds to x = 0, 
wherek = (I/s) + iE. 
Point D corresponds 
to x = 11"/2, where k = 
iE. In case (ii), point 
C, wherek = I + iE, 
is taken atx = COS-IS. 

(4.2) 

We put t = S - iE and divide G(t) into the real and 
imaginary parts: 

G(s - iE) = GR(s) + iGr(s). (4.3) 

We notice again that GR(s) is an odd and Gr(s) is an 
even function of s: 

GR ( -s) = -Gds), Gr( -s) = Gr(s); (4.4) 

e.g., cf. (1.1) with (1.3). 
We now consider the region 0 < s < 1. The values 

of k occurring in the integral (4.1) are shown in Fig. 3. 
By using (2.5), one obtains 

GR(s) = 4- (COS-IS dx 1. K(l) + 4- (h -1 dx K(k), 
7T s Jo k k 7T S Jcos s 

5. FACE-CENTERED CUBIC LATTICE 

The Green's function at t > 3 is expressed as3 

4 fig 
G(t) = 2 dx K(k), 

7T (t + 1) 0 

where 
k = 2(t + cos2 x)t/(t + 1). 

(4.5) 

(4.6) 

(5.1) 

(5.2) 

We put t = s - i€ and denote the real and imagin­
ary parts G(s - i€) as GR(s) and Gr(s): 

G(s - i€) = GR(s) + iGr(s). (5.3) 

For the fcc lattice, no symmetric behaviors between 
positive and negative values of s. We have to divide 
the range - 00 < s < 00 into five regions as foIlows: 

(i) 3 < s, 
(ii) 1 < s < 3, 

(iii) 0 < s < 1, 
(iv) -1 < s < 0, 
(v) s < -1. 

For case (i), the values of k occurring in the integral 

(5.1) are between 0 and 1, and we can use (5.1) by 
putting t = s. 

In order to derive the expressions of GR(s) and 
Gr(s) for cases (ii)-(v), we draw the figures to show the 
values of k occurring in the integral (5.1). They are 
shown in Fig. 4. In Fig. 1, the numbers of the equa­
tions which are useful on the various regions near the 
real and imaginary axis are shown. By comparing 
with this figure and then the referred equations, we 
easily obtain the results for cases (ii)-(v) as foIlows. 

Case (ii): 1 < s < 3 

Comparing Fig. 4(ii) and Fig. I and using (5.1) and 
(2.5), we have 

4 (fCOS-
1
[(S-lJ/2l 1 

GR(s) = 2 dx - K(k) 
7T (s + 1) 0 k 

l ilT ) + dx K(k) , 
cos-1[(s-lJ/2l 

(5.4) 

4 fCOS-l[(S-lJ/2l 1 (k2 - I)!) 
G (s) - - K 

r - 7T2( S + I) 0 k k . 
(5.5) 

(j) 5>3 (v) 5"'-1 

-I o B" 

(ii) 1 <5 < 3 An 

!:..A 
-I 0 1 

(ji;) 0 <5<1 

1 
-I 0 B' c' A' -I 0 

(iV) -1<5<0 

0' 
-I 0 c· A' 

B" 

FIG. 4. Complex k plane for the fcc lattice, points A, A', and AN 
correspond to x = 0, where k = 2/(s + 1)1/2 '+ iE,2/(1 + S)1/2 - iE, 
and 2i/( -1 - s), respectively. Points D, B', B n

, and B'" correspond 
to x = !11", where k = 2S1/2/(S + 1) + iE, 281/2/(S + 1) - iE, 
-2i(-S)I/2/{1 + s) + E, and 2i(-S)1/2/(-S - I), respectively. In 
case (ii), x = cos-1 res - 1)/2] at C, where k = 1 + ire. In cases (iii) 
and (iv), x = cos-1 [(1 - s)/2] at C', where k = 1 - iE. In case (iv), 
x = cos-1 [(_S)I/2] at D', where k = (-1 + ik 
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Case (iii): 0 < s < 1 

We compare Fig. 4(iii) and Fig. I. By using (2.4) 
and (2.5), one has 

Case (iv): -1 < s < 0 

Figure 4(iv) and Fig. I are compared. With !he aid 
of (2.4), (2.5), and (2.8), we have 

Case (v): s < -1 

Figure 4(v) and Fig. 1 are compared. Now (2.7) is 
used to give 

GR(s) = 4 rh
dx 1 !K( k/i ) 

7T2(S + 1) Jo (l - p) (1 - k2)! ' 

(5.10) 

G1(S) = O. (5.11) 

6. RESULTS OF NUMERICAL CALCULATIONS 

The formulas presented in the preceding sections 
are used for the numerical evaluation of the lattice 

Green's functions for the cubic lattices. In the cal­
culation for the sc lattice, the parameter y is put equal 
to unity. The results obtained are shown in Figs. 5-
7. The results for s ~ 3 (sc and fcc) and s > 1 
(bee) are in agreement with the previous one. 3•5 The 
results for 0 ~ s ~ 1 and 3 < s < 00 (sc) are found 

FIG. 5. The lat­
tice Green's func-

2.0 

1.5 

tion for the simple 1.0 
cubic lattice. GR(S) 
and Gr(s) are the 
real and imaginary 0.5 
parts, respectively. 

GI(s 

-

~ 

i I 
I 

Simple Cubic 

~R(S) 

.'-r--7 ~ 
00 1.0 2.0 3.0 4.0 5.0 6.0 7.0 

28r--.--r--------.,.------,-------, 

Body-Centered ubic 

2.0 f---~' ___ -I 

°O~---~O~.5----~----~1.5~--~2.0 

FIG. 6. The lattice Green's function for the body-centered cubic 
lattice. GR(S) and GI(S) are the real and imaginary parts, respectively. 

I I 
2.5 Face-Centered ~ubic _j 

FIG. 7. The lattice Green's function for the face-centered cubic 
lattice. GR(S) and GI(S) are the real and imaginary parts, respectively. 
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in complete agreement as those obtained by Katsura, 
Inawashiro, and Abe with the aid of the expansion 
formulas. 6 

7. CONCLUDING REMARKS 

The formulas useful for the calculation of the lattice 
Green's function G(s - iE) for the cubic lattices are 
derived for the whole range, - 00 < s < 00, by the 
method of the analytic continuation from the expres­
sions which have been derived for the range s > 2 + y 
(sc or tetragonal), s ~ 3 (fcc), or s ~ 1 (bcc). We 
mention here that we have derived all the formulas 
for - 00 < s < 00 by introducing a suitable change of 
variables, after the integration over z is performed on 
(1.1). That derivation is more elementary but laborious 
and will be published on a suitable occasion. 

In the derived expressions for the lattice Green's 
functions, the integration over one of the coordinates 
x is left to be performed. Hence if the integrand of 
(1.1) is multiplied by an arbitrary function of x, each 
integrand in the final expressions must involve the 
same function. If the function cos Ix with an integer 
I is used, one can calculate the lattice Green's function 
denoted by I tetra (t; 1,0,0; y) in the general intro­
duction.1 Such a calculation is now in progress and 
[tetra (t; I, m, n; y) for some sets of I, m, and n are 
known to be evaluated with the aid of the results (see 
Ref. 5). 
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in complete agreement as those obtained by Katsura, 
Inawashiro, and Abe with the aid of the expansion 
formulas. 6 

7. CONCLUDING REMARKS 

The formulas useful for the calculation of the lattice 
Green's function G(s - iE) for the cubic lattices are 
derived for the whole range, - 00 < s < 00, by the 
method of the analytic continuation from the expres­
sions which have been derived for the range s > 2 + y 
(sc or tetragonal), s ~ 3 (fcc), or s ~ 1 (bcc). We 
mention here that we have derived all the formulas 
for - 00 < s < 00 by introducing a suitable change of 
variables, after the integration over z is performed on 
(1.1). That derivation is more elementary but laborious 
and will be published on a suitable occasion. 

In the derived expressions for the lattice Green's 
functions, the integration over one of the coordinates 
x is left to be performed. Hence if the integrand of 
(1.1) is multiplied by an arbitrary function of x, each 
integrand in the final expressions must involve the 
same function. If the function cos Ix with an integer 
I is used, one can calculate the lattice Green's function 
denoted by I tetra (t; 1,0,0; y) in the general intro­
duction.1 Such a calculation is now in progress and 
[tetra (t; I, m, n; y) for some sets of I, m, and n are 
known to be evaluated with the aid of the results (see 
Ref. 5). 

JOURNAL OF MATHEMATICAL PHYSICS 

ACKNOWLEDGMENTS 

The authors are grateful to Professor S. Katsura 
for valuable discussions. The numerical computations 
were performed with the aid of the computer NEAC 
2200 of the Computer Center, Tohoku University. 

Note added in proof: An alternative derivation of 
the formulas given in the present article is given by 
the present authors in J. Phys. Soc. Japan 30, No.4 
(1971). The formulas for the imaginary part Gls) 
have been given by Jelitto [1. Phys. Chern. Solids 30, 
609 (1969)]. If one Lis interested only in the values at 
the origin of the lattice Green's function for the bcc 
or fcc lattice, a more efficient method has been found, 
presented in the following paper of the present authors 
[1. Math. Phys. 12,986 (1971)]. 

, Present address: Dept. of Physics, Ohio University, Athens, 
Ohio 45701. 

1 A general introduction of the present series is given in a preceding 
paper by S. Katsura, T. Morita, S. Inawashiro, T. Horiguchi, and 
Y. Abe, J. Math. Phys. 12, 892 (1971). 

2 E. W. Montroll, Proceedings of the Third Berkley Symposium on 
Mathematical Statistics and Probability (U. of California Press, 
Berkeley, Calif., 1955), Vol. III, p. 209. 

3 I. Mannari and C. Kawabata, Department of Physics, Okayama 
University, Research Notes, No. 15, 1964. 

4 Bateman Manuscript Project, Higher Transcendental Functions, 
edited by A. Erdelyi (McGraw-Hill, New York, 1953), Vol. II, 
p. 317ft'., and Vol. I, p. 105ft'.; W. Magnus and F. Oberhettinger, 
Formelll und Siitze fiir die Mathematische Physik (Springer-Verlag, 
Berlin, 1948). 

5 A. A. Maradudin, E. W. Montroll. G. H. Weiss, R. Herman, 
and H. W. Milnes, Acad. Roy. Belg., Classe Sci.,9, No.7 (1960). 

• S. Katsura, S. Inawashiro, Y. Abe, J. Math. Phys.12,,895 (1971). 

VOLUME 12, NUMBER 6 JUNE 1971 

Calculation of the Lattice Green's Function for the 
bcc, fcc, and Rectangular Lattices 

TOHRU MORITA' 

Department of Applied Science, Faculty of Engineering, Tohoku University, Sendai, Japan 
AND 

TSUYOSHl HORIGUCHl* 

Department of Physics, Faculty of Science, Tohoku University, Sendai, Japan 

(Received 3 August 1970) 

Formulas are provided which are convenient for the evaluation of the lattice Green's functions for 
the bcc, fcc, and rectangular lattices, at an arbitrary complex variable. The formulas involve the complete 
elliptic integral of the first kind with complex modulus; the integral has been found to be evaluated 
efficiently by the method of the arithmetic-geometric mean, generalized for the case with complex mod­
ulus. The expansions of the lattice Green's functions around the singular points are given for the bee 
and fcc lattices. These lattice Green's functions diverge at a variable. The singular points responsible 
for the divergences are found to form one-dimensional lines. 

1. INTRODUCTION where w(x, y, z) is 

The lattice Green's functions for the cubic lattices 
are defined by 

w(x, y, z) = cos x + cos y + cos z, (1.2) 

w(x, y, z) = cos x cos y cos z, (1.3) 

1 f." r" i" 1 G(t) = '3 dx dy dz , (Ll) 
7T .0 .,0 0 t - w(x, y, z) 

w(x,y,z) = cosycosz + coszcosx + cosxcosy 
(1.4) 



                                                                                                                                    

CALCULATION OF THE LATTICE GREEN'S FUNCTION 987 

for the simple cubic (sc), the body-centered cubic 
(bcc),and the face-centered cubic (fcc) lattices, respec­
tively. The function is an analytic function of the 
complex variable t except on the real axis from - 3 to 
3 (sc), from -1 to 1 (bcc) , and from -1 to 3 (fcc). 
Therefore, if one has an analytic expression which 
represents the function G(t) in some region or on a 
line or on a converging series of points on the complex 
t plane, where G(t) is analytic, one can in principle 
achieve the analytic function which represents G(t) 
on the whole complex t plane by the process of 
analytic continuation. This procedure has been 
successfully applied to obtain the expression of G(t) 
for t = S - i€ (- 00 < S < 00, € ~ 0) from the known 
expressions for t > 3 (sc and fcc) or for t > 1 (bcc).1-4 

For the bcc lattice for t > 1 and for the fcc lattice 
for t < -lor t > 3, compact expressions have been 
given for the lattice Green's function G(t) in terms of 
the complete elliptic integral of the first kind. 506 The 
corresponding expression for the rectangular lattice 
is easily derived. The process of analytic continuation 
has been applied to the expression for the bcc lattice 
by Katsura and Horiguchi.4 They obtained expres­
sions for the real and imaginary parts separately in 
terms of the hypergeometric functions. In the present 
paper, alternative expressions for G(t), useful for an 
arbitrary complex value t, are obtained for the bcc as 
well as for the fcc and rectangular lattices in terms of 
the complete elliptic integral of the first kind with 
complex modulus. 

For real values of the modulus, the method of the 
arithmetic-geometric mean is a very powerful method 
of calculating the elliptic integrals and the Jacobian 
elliptic functions (e.g., see Refs. 7 and 8). In a separate 
paper9 the present authors showed that the method is 
powerful also for the evaluation of these quantities 
with complex modulus. Then the lattice Green's 
functions G(t) for the bcc and fcc lattices for the 
complex values of t in general are calculated with the 
aid of that method for an arbitrary complex variable 
t, in particular for t = s - iE, where - 00 < S < 00 

and € is an infinitesimal positive number. 
Discussions in the following sections are restricted 

to the calculation of G(t) for t in the lower half of the 
complex t plane. The results for the upper half of the 
plane can be obtained through the equation 

G(t*) = G(t)*. (1.5) 

Special attention is focus€d on the calculation of G(t) 
just below the real axis: 

lim G(s - i€) = GR(s) + iGr(s) (1.6) 
<-->0 

for s from - 00 to + 00. The imaginary part Gr(s) is 

related to the level density of the Bloch electrons and 
lattice vibration of the lattice. 

The numerical calculations of the lattice Green's 
functions have been attempted by using the expres­
sions which are a sum of definite integrals of the com­
plete elliptic integral of the first kind for the sc, bcc, 
and fcc lattices.3 The results for the latter two lattices 
are reproduced by the present method with far less 
labor to higher accuracy. The curves obtained for 
these lattices are reproduced in Figs. 2 and 7. They 
show a divergence. According to van Hove,1O the 
divergence of the level density, which is the imaginary 
part of the Green's function, Gr(s), occurs for the 
3-dimensional lattice only for a special interaction. 
It is shown that the special relations predicted by 
van Hove for the occurrence of the divergence are 
satisfied for the present casesY The expansions of the 
Green's functions at the van Hove singular points are 
given with the aid of the expansions of the complete 
elliptic integral of the first kind. 

The formulas for the bcc and fcc lattice are given in 
Sec. 2 and are analyzed in Sec. 3. The results of Sec. 2 
are summarized in Sec. 4. The corresponding dis­
cussions for the rectangular lattice are given in the 
Appendix. 

2. EXPRESSIONS FOR THE LATTICE GREEN'S 
FUNCTIONS 

A. bee Lattice 

The bcc lattice Green's function G(t) for t > 1 is 
known to be expressed as follows: 

(2.1) 

where 

The value of G(t) for t < -1 is evaluated by the 
relation 

G( -t) = -G(t), (2.3) 

which is a consequence of the definition (1.1) with 
(1.3). 

When t > 1, k defined by (2.2) is real and between 
o and 1/.,}2. We draw the values of k for t = s - i€ 
in Fig. I, where - 00 < s < 00 and € is an infinitesi­
mal positive number. In drawing the figure, we first 
rewrite (2.2) as follows: 

(2.4) 

We note that the factor (s - i€ - a)t for s > a 
changes to -i(a - s + i€)! for s < a. We denote 
that limiting value of (s - i€ - a)t at € -->- 0 (€ > 0) 
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5-0-
\. 

-2 

-1<5<0 

-I 5<-1 o 

bee 

-I COMPLEX k PL ANE 

FIG. 1. The values of.the argument k of the complete elliptic 
Integral for t = S - IE, - rf) < S < rf), for the bee lattic('. 

by (s - a)! so that 

(s - a)! = (s - a)!, s - a ~ 0, 
(2.5) 

= -i(a - s)!, s - a < 0. 

Then k, for t = s - iE, f. ;:., 0, is denoted by 

k = [(s + I)! - (s - 1)!]/2s!, -00 < s < 00: 

(2.6) 
At s < I, this expression represents 

k = [(s + l)! + i(1 - s)!]/2s!, ° < s < I, (2.7) 

k = [-(1 - s)! + i(1 + s)!]/2(-s)!, -I < s < 0, 

(2.8) 

k = [-(I - s)! + (-I - s)!]/2(-s)!, s < -1. 

(2.9) 

The lower half of the complex t plane is mapped to 
the region above the line showing k for s - iE. The 
lattice Green's function G(t) for t = s - if. and for an 
arbitrary complex variable t with negative imaginary 
part is evaluated with the aid of the formula (2.1) with 
(2.2) or (2.4). Evaluation of K(k) is performed with 
the aid of the method of the arithmetic-geometric 
mean. Its program is attained by changing the 
declaration of some of the variables and functions 
occurring in the programs7

•
8 prepared for real modulus 

from real to complex.9 The result of the numerical 
computation is shown in Fig. 2. 

B. fcc Lattice 

The fcc lattice Green's function G(t) for t < -1 
and t > 3 has recently been expressed as follows6 : 

G(t) = [4/7T2(t + l)]K(kl)K(kt) (2.10) 

for t > 3, where 

k~ = 1-(1 ± 4t!(t + 1)'~ _ (t - 1)(t + 1)!(t - 3)!)! 
2! (t + 1)2 (t + 1)2 ' 

(2.11) 

2.8nr-------------~ 

Body- Cent.red Cubic 

2,0 

1.0 

%r------n0~.5------~1~.0------~1~.5------~2~ 

FIG. 2. The Green'~ fun~tion for the bee lattice. GR(S) and GI(S) 
represent the real ~nd ImagInary p~rts. respectively. They are an odd 
and an even functIOn of s, respectIvely, for this lattice. 

and 

G(t) = -(8/7T2)[(3 - t)l( -1 - t)! + 1 - ttl 

x K(k;)K(k;) (2.12) 

for t < -1, where 

kt = [2( -t)! ± 2( -1 - t)l]j 

[(3 - t)!( -1 - t)! + 1 - t]. (2.13) 

The expressions of kl and kt for t = s - if. are 
obtained by using (s - a)~, defined by (2.5), in place 
of (t - a)! occurring in (2.11). Figures 3 and 4 show 
the curve of them for - 00 < s < 00. The lower half 
?f the complex t plane is mapped to the region which 
IS to .the left of the imaginary axis, and is bounded by 
the hne for s - if., in Fig. 3. In Fig. 4, it is mapped 
to the right of the line for s - iE. Now for -1 < s < I, 
the values of kt appear below the real axis across 
the real axis between I and + 00. For kt on this part 
of the curve and to the right of the curve below the 
real axis, the analytic continuation K(II)(kt) defined 

fcc 
COMPLEX k; PLANE 

-2 2 

FIG. 3. The values of k:; for t = S - iE, -rf) < S < rf). 



                                                                                                                                    

CALCULATION OF THE LATTICE GREEN'S FUNCTION 989 

\ S ·-1 
fcc 

COMPLEX k~ PLANE 

-oo<S<-1 

s- -00 

s·()() 
- i 0 2 

S·O 

-I 

-2 

FIG. 4. The values of k+ for 1 = S - iE, -00 < s < 00. 

as follows must be used in place of K(kt): 

K(II)(ki) = K(ki) + 2iK'(ki), (2.14) 
where 

K' (k) == K(k'), k' == (1 - k2)t. (2.15) 

[This analytic continuation is obtained by considering 
the expansion of K(k) around k = 1 as given by (3.4) 
in the following section.] For the other values of ki 
and k1, we can use the complete elliptic integral, and 
we have 

where 

Kno(ki) = K(kt), 1m ki > 0, 1m t < 0, 

= K(ki) + 2iK'(kt), 

1m kt < 0, 1m t < O. (2.17) 

For t = s - if, kt are given by 

k; = U( -s)t(l - s) =f (3 - s)t( -1 - s) 

± (-1 - s)t(l - s) 

- (-s)t( -1 - s)t(3 - s)t], (2.1S) 

where (a - s)! denotes 

namely 

(a - s)! == (a - s)!, a - s > 0, 

== i(s - a)t, a - s < 0, 
(2.19) 

(a - s)! = i(s - a)t (2.20) 
[cf. (2.5)]. 

The values of k; and kt for t = s - if, where 
- 00 < s < 00 and f ;., 0, are shown in Figs. 5 and 6. 
Equation (2.1S) with the lower and upper signs map 
the lower half of the complex t plane to the inside of 
the curve shown in Figs. 5 and 6, respectively. 

For -1 < s < 1 and f ;;.. 0, the curve given by 
Fig. 6 for kt is above the real axis across the part from 

-I 

1 

s-

5-3 

-4 

fcc 

COMPLEX k; PLANE 

FIG. 5. The values of k. for t = s - iE, -00 < s < 00. 

1 to + 00. Hence, K(kt) for kt, which is on and inside 
of this part of the curve above the real axis, must be 
the analytic continuation of K(kt): 

K(III)(kt) = K(kt) - 2iK'(kt). (2.21) 

For the other parts, K(kt) and K(k;) are the complete 
elliptic integral for complex modulus. Now we have 

G(t) = -(S/7T2)[(3 - t)l( -1 - t)t + 1 - ttl 
X K(k"2)K(lJI)(kt), (2.22) 

where K(IIIl(kt) is given by 

K(III)(ki) = K(ki), 1m ki < 0, 1m t < 0, 

= K(kt) - 2iK'(kt), 

1m ki > 0, 1m t > O. (2.23) 

The lattice Green's function G(t) for the fcc lattice 
is evaluated with the aid either of (2.16) or (2.22) for 
an arbitrary complex t or for s - if, - 00 < s < 00 

and f ;;.. O. The fact that the expressions (2.16) and 
(2.22) are equivalent is checked by substituting the 

fcc 
COMPLEX ki PLANE 

5 ·-1 

FIG. 6. The values of kt for t = s - iE, -00 < s < 00. 
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2.5 Face-Centered Cubic 

-4.0 -3.0 1.0 2.0 3.0 4.0 5.0 6. 

FIG. 7. The Green's function for the fcc lattice. <ht(s) and GI(S) 
represent the real and imaginary parts, respectively. 

relations connecting kt- and kt, 

k~ = ikt/(kt)' or kt = ik~/(k~)', (2.24) 

into the following formula of the complete elliptic 
integral: 

K(kt) = K(ikt/(k~)') = (k~)'K(k~), (2.25) 
where 

(2.26) 

The result of the numerical computations is shown 
in Fig. 7. Both of the formulas (2. I 5) and (2.21) gives 
the identical result. But when one uses (2.21), he 
must take special care in the calculation because for 
that formula k becomes unity and k' is zero at s = -1. 
The accuracy of the arithmetic-geometric mean 
depends on the accuracy of k'.8.9 In fact, we have 
obtained better results by the aid of (2.21) without 
special cares in the program for the computer. 

3. ANALYTIC BEHAVIORS OF THE LATTICE 
GREEN'S FUNCTIONS 

A. bee Lattice 

We present the expansions of the Green's function 
G(t) which is given by (2.1) and (2.2) or (2.4) at 
t = 00, ( = 0, and ( = 1. The expansion at ( = 00 is 
obtained by substituting (2.2) or (2.4) into the expan-
sion12 •13 

and then into (2.1). Here mn = r(n + mrm. The 
result is 

1 1 1 27 1 125 1 ( t ) 
G(t) = t + "8 f + 512 f + 4096 f + 0 ~ . (3.2) 

The expansion at t = 0 is obtained by using the 

formula12.13 

K(k) = (l/k)[K(1/k) + iK'(1/k)]. (3.3) 

For the first term of the right-hand side, (3.1) for l/k 
is used. For the second term we use12.13 

K(k) = - ~ K(k') In k' 

+ nt(!~nJ["P(n + 1) - "P(n + !)]k,2n, (3.4) 

where k' = (1 - k2)t, and "P(z) = r'(z)jr(z). Sub­
stituting (2.2) into (3.3) and then into (2.1), we obtain 

G(s - ie) = -(2/7T) In is + O(s2ln s) 

+ i[(2/7T2)(ln is)2 - t + O(s2(ln s)2)]. (3.5) 

This expression is given in a preliminary report by the 
present authors.u 

The expansion at s = 1 is obtained simply by ex­
panding k and hence K(k) and G(t) in powers of 
(l - 1/(2)t. 

More detailed analysis of the lattice Green's func­
tion for the bcc lattice is presented by Katsura and 
Horiguchi.4 

B. fcc Lattice 

The expansion of the lattice Green's function for 
the fc lattice is derived around the singular points 
t = 00 and t = -1. 

The expansion at t = 00 is obtained by expanding 
K(kt) in (2.10) or K(k;) in (2.1 2) in powers of kt or 
k;, where the formula (3. I) is used, and then by 
expanding kt- or k; in powers of l/t. The result is 

G(t) = t-1 + !t-3 + !(-4 + O(t-5). (3.6) 

The expansion at t = -1 is obtained by using (3.4) 
into (2.12) and then expanding k; in powers of 
(-1 - t)t. As a result, one obtains 

G(s - ie) 

= - ~[ln (1 + S)J2 + ~ + 0«1 + s)[ln (1 + S)]2) 
47T 16 4 

+ i( - 2
3
7T In C ~ s) + 0«1 + s)[ln (1 + 5)]2») 

(3.7) 
for s ~ -I and 

G(s - ie) = - ~[ln (11 + SI)J2 
47T2 16 

+ 0«1 + s)[ln 11 + sl]2) (3.8) 

for s >( - I. The same result is attained with the aid of 
(2.10) with (2.12). In that case, one uses the formula 
(3.3). 
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The expansions at s = 0 and 3 are obtained simply 
by expanding K(kf=) or K(kf) at the respective points, 
in powers of t! and (t - 3)!, respectively. 

C. Discussions of the Divergences 

As shown in Figs, 2 and 7 and Eqs. (3.5), (3.7), and 
(3.8), divergences are observed at s = 0 for the bcc 
lattice and at s = -I for the fcc lattice, respectively. 

According to van Hove,lo the divergences in the 
3-dimensional lattice must be related to the critical 
point where the first derivative of w(k) vanishes and 
also where the determinant of the second derivative, 
that is the Hessian, is zero: 

aw(k) = 0, I a2
w(k) I = 0, 

ak akiak j 

(3.9) 

where k = (x, y, z), kl = x, k2 = y, and k3 = z. 
In fact, for the present choice of w(k), we find that 

both of these relations are satisfied at an arbitrary 
point on the singular lines on which two of the three 
components of k are !7T for the bcc lattice and at an 
arbitrary point on the singular lines on which two of 
the components are 7T and 0, respectively, for the fcc 
lattice. We confirm that w(k) on these lines are equal 
to zero and minus unity, respectively; these values of 
w(k) correspond to the center of the band of the bcc 
lattice and the top of the band of the fcc lattice. For 
the bcc lattice, w(k) is equal to zero on the planes 
where one of the components is t7T, and the cross lines 
constitute the singular lines. For the fcc case, the plane 
where w(k) is a little more than -I encloses the 
singular lines. 

We shall now consider the case where the next­
neighbor interaction is also not zero. Then we find 
that aw(k)/ak still vanishes at some points on the 
singular lines but the Hessian becomes finite at these 
critical points. Thus the divergent behaviors disappear 
from the curves for the Green's functions. In this 
sense, the nearest-neighbor interaction is, in fact, a 
very special form of the interaction for which the 
singular points form the singular lines and a divergence 
occurs, for the cases of the bcc and fcc lattices. 

4. SUMMARY 

The formulas for calculating the lattice Green's 
function G(t) are provided for the bcc and fcc lattices. 
For the bcc lattice, we have (2.1) with (2.4). For the 
fcc lattice, we have two formulas: (i) (2.16), (2.17), 
and (2.11) and (ii) (2.22), (2.23), and (2.13); the 
former one is the more advisable. The formulas are 
applicable to arbitrary complex values of t for whic~ 
1m t < o. If 1m t > 0, G(t) is given by G(t*)*. When 
t is just below the real axis, t = s - iE, - 00 < S < 00, 

(t - a)! in (2.4), or (2.11) must be replaced by the 
expressions given on the right-hand side of (2.5) and 
(a - t)! in (2.13) by the ones on the right-hand side 
of (2.19). 

The formulas for the rectangular lattice are provided 
in the Appendix. 
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APPENDIX: THE LATTICE GREEN'S FUNCTION 
FOR THE RECTANGULAR LATTICE 

In this appendix, we consider the rectangular 
lattice, which includes the square lattice as a special 
case. For this lattice, function G(t) is defined by 

1 iTT iTT 1 G(t) = --; dx dy . 
7T 0 0 t - y cos x - cos y 

(AI) 

When t > 1 + y, we have 

1 iTT G(t) = - dx[(t - y cos X)2 - 1]-! 
7T 0 

(A2) 

= (7Ty!)-lk1K(k1), (A3) 
where 

kl = {4y/[t 2 - (y - 1)2])!; (A4) 

the transformation which leads (A2) to (A3) is 

t - Y cos x-I t + y - 1 ( k2. 2 () (AS) ---'----- = 1 - 1 sm ). 
t - y cos x + 1 t + y + 1 

Here y is assumed to be greater than unity without 
loss of generality. Now we can apply the discussion 
in the text directly to the above expression (A3). By 
(A4) , the lower half of the t plane is mapped to the 
upper half of the kl plane, and G(t) for an arbitrary 
complex t is evaluated by (A3) with (A4). G(t) for 
t = s - if:, - (y - I) < s < y - 1, is calculated by 
replacing (t - a)! by the right-hand side of (2.5). 
Then, by using the standard formulas for the complete 
elliptic integral of the first kind, one obtains 

and 

where 

G(t) = --.!, [K(l/k1) + iK(l/k2»), 
7Ty~ 

y - 1 < s < y + I, (A6) 

i 
G(t) = -! k2K(k2), 0 < s < y - 1, (A7) 

7Ty 
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The imaginary parts of the expressions (A~) and (A7) 
have already been given by Montroll,14 The expan­
sions of (A3), (A6) , and (A7) at s = y - I - iE, 
Y + 1 - iE, and 00 are easily obtained with the aid of 
the expansion formulas (3.1) and (3.4). 

From the general theory of the elliptic integrals, we 
find that we can, in principle, express the integrals 
which involve cos mx cos ny, m, n = 0, 1,2, ... , in 
the numerator of (AI) in terms of the complete 
elliptic integrals and that· then the present method is 
applicable to these integrals. The investigation of this 
problem is left as a future problem. 
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The ac susceptibility for the one-dimensional Ising model is obtained for arbitrary coupling strength 
in the presence of a dc bias field strong enough to align most of the dipoles in one direction. The dipole 
flip probability is assumed proportional to the Boltzmann factor corresponding to half the energy change 
resulting from the flip. The general expression for ac susceptibility is analyzed in three limiting cases: 
weak coupling with strong bias, strong coupling with strong bias, and strong coupling with weak bias. 
In the latter case, relatively long chains of anti-aligned dipoles exist and give rise to large susceptibility. 

The dynamic behavior of the one-dimensional 
stochastic Ising model has been studied previously by 
Meijer, Tanaka, and Barryl in the limit of weak spin 
coupling, and by Glauber,2 who found the ac sus­
ceptibility for the case of zero bias field. In the present 
work the isothermal ac susceptibility is found for 
arbitrary coupling strength in the presence of a dc 
bias field sufficiently large to align most dipoles in one 
direction. The region of applicability for each of these 
calculations is indicated in Fig. 1. Glauber's results 
are exact for zero bias. The present results are com­
plementary to his in that they become exact as the 
bias field becomes strong enough to align all dipoles. 

The one-dimensional Ising model is applicable to 
materials in which significant coupling of neighboring 
electric or magnetic dipoles exists in only one direc­
tion. The present results are potentially useful for 

such materials with large bias fields applied, but of 
particular interest is possible application to crystals 
of noncentric structure in which the structure rather 
than an externally applied field favors alignment of 
electric dipoles in one direction. The relation of this 
model to such a crystal, lithium hydrazinium sulfate, 
is briefly discussed. 

This model assumes electric or magnetic dipoles of 
moment f.l aligned parallel (up; (J = 1) or anti parallel 
(down; (J = -1) to the dc bias field Eo. The Hamil­
tonian in the presence of Eo and a time-varying field 
Et is 

H = - J ! (JZ(JZ+l - f.l(Eo + E t ) ! (Jz, (1) 
I Z 

where the nearest-neighbor interaction energy param­
eter J is positive, tending to align adjacent dipoles. 

The polarization resulting from N dipoles in a 
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electric dipoles in one direction. The relation of this 
model to such a crystal, lithium hydrazinium sulfate, 
is briefly discussed. 

This model assumes electric or magnetic dipoles of 
moment f.l aligned parallel (up; (J = 1) or anti parallel 
(down; (J = -1) to the dc bias field Eo. The Hamil­
tonian in the presence of Eo and a time-varying field 
Et is 

H = - J ! (JZ(JZ+l - f.l(Eo + E t ) ! (Jz, (1) 
I Z 

where the nearest-neighbor interaction energy param­
eter J is positive, tending to align adjacent dipoles. 

The polarization resulting from N dipoles in a 



                                                                                                                                    

,AC SUSCEPTIBILITY 993 

FIG. 1. Regions of 
applicability for stud-
ies of dynamic behav-
ior of one-dimen­
sional stochastic Ising 
model. Meijer, Tan-
aka, and Barry (Ref. 
I) studied the weak 
coupling case (b« 
I). Glauber (Ref. 2) 
found the ac suscep­
tibility for the zero 
bias case (a = 0). In 
the present work the 
ac susceptibility given 
in Eq. (17) should 
approximate the un­
known exact value in 
the region to the right 
of the curved line, 
because in this region 
the dc limit of Eq. (17) 
as given in Eq. (18) is 
within 10% of the 
exact dc susceptibility 
(Ref. 3) given in Eq. 
(19). 

b 

(~) 

volume V is given by 

2 

o 

I 
I 
I 

~~ 
GLAUBER I 1:>. 

-------:- -~'\------------
Weak I 11'_ 
coup/lng, I coupling, 
.-.ok I strong 
bios I bios 

1 
MEIJER, TANAKA, AND BARRY 

I 

p = ~[N - 2 ~ m(Nm + nm)} (2) 

where Nm is the equilibrium number of chains each 
composed of m adjacent down dipoles and nm is the 
deviation caused by E t • The energy required to create 
a chain is 4J + 2fl{Eo + Et)m. The large-polarization 
approximation used herein is that the equilibrium 
probability of such a chain beginning at anyone of 
the N sites is simply the Boltzmann factor e-/l(U+2pEom) , 

where /3 = (kT)-I. In this approximation the relations 

N m = N e-/l(U+2pEom), (3) 

2, mN m = Ne-4/1J/4 sinh2 «(3flEo) (4) 

are obtained. The equilibrium polarization obtained 
by combining Eqs. (2) and (4) approaches the exact 
expression3 

p _ Nfl sinh «(3flEo) (5) 

- V[sinh2 «(3flEo) + e-4/1 J ]! 

if the large-polarization condition sinh (fl/3Eo) » e-2/l J 

is fulfilled. 
The equilibrium Nm in Eq. (3) can also be obtained 

by assuming that the flip probability per unit time for a 
given dipole is a thermally induced basic flip rate Y 

multiplied by the Boltzmann factor corresponding to 
haif the energy change resulting from the flip. This 
probability was chosen with electric dipoles in mind. 
Even if their initial and final states have equal energy, 
they usually must surmount a large barrier in order to 
flip. Then a change U in the final state energy will 
change the barrier height by approximately !U, 
giving a flip rate of Ye-PU/2• Glauber2 uses different 

flip probabilities, y[1 - ! tanh (2/3J)111(111_1 + 111+1)]' 
which were chosen for their simplicity. As he points 
out, there are infinitely many choices of flip prob­
abilities which will yield the correct equilibrium 
populations. 

In equilibrium, the rates of creation and annihila­
tion of isolated down dipoles must be equal, as 
indicated below, 

dNI I = NYe-/l(2J+pEo) - N
1
Ye/l(2J+pEo) = 0, (6) 

dt N. 

and a similar relation governs equilibrium between 
numbers of chains containing m - 1 and m down 
dipoles: 

dN m I = 2N m_I'Pe-PpEo - 2N m'PePPEo = o. (7) 
dt Nm+l 

(The 2 occurs because these chains can grow or shrink 
at either end.) Both flip probabilities in either Eq. (6) 
or Eq. (7) could be multiplied by the same parameter 
without upsetting the equilibrium, but the symmetric 
expressions used seem physically the most reasonable. 
In Eqs. (6) and (7) the use of N, rather than the more 
exact value N - 2, (m + 2)N m , and the neglect of the 
effects of isolated up dipoles, are large-polarization 
approximations which allow these equations to be 
satisfied by the approximate N m of Eq. (3). 

Application of a time-dependent field Et multiplies 
the transition rates in Eqs. (6) and (7) by the factors 
of e±fJpE" and these modified transition rates provide 
differential equations governing the population 
changes: 

iiI = N'Pe-P(2J+pEo+pE,) - (NI + nl)YeP(2J+pEo+pEtl 

+ 2(N 2 + n
2
)1I!P(Eo+E,) 

- 2(N 1 + nl)'Pe-Pp(Eo+E,), (8) 

n· = 2(N + n )'Pe-/lp(Eo+E,) 
m m-I m-l 

- 2(N m + nm)'PePp(Eo+E,) 

+ 2(N m+1 + nm+l)'PePp(Eo+E,) 

- 2(N m + nm)'Pe-/lp(Eo+E,), m > 1. (9) 

Upon setting a = (3 flEo, b = 2/3J, c = N /3 fle-4/lJ, 
making the small-field approximation e±/lpE, = 1 + 
(3flEt , eliminating terms which cancel according to 
Eqs. (6) and (7), and terms of the form nm(3flEt, 
which are of second order in E t , and using the 
expression in Eq. (3) for N m' these equations become 

iiI + Ynl(eb+a + 2e-a) - 2vn2ea 

= -2'PEtce-2a(eHa - 2e-a), (10) 

lim + 4vnm cosh a - 2Yllm_le-a - 2'Pnm+1ea 

= -8yEtce-2am sinh a, m> 1. (11) 
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For a small sinusoidal applied field Et = Etoeiwt
, 

these equations become 

(2io. + !eb+a + e-a)Sl - e-aS2 
= _!eb+a + e-a, (12) 

(2io. + 2 cosh a)Sm - eaSm_l - e-aSm+l 

= -2 sinh a, m> 1, (13) 

where 0. = w/4v and Sm = (nm/2c)e-2amEt. If Sm is 
assumed to be of the form 

Sm = SoGm - (io.)-l sinh a, (14) 

then Eq. (13) is satisfied if G has the values 

G = ea{cosh a + io. ± [(cosh a + io.)2 - IJl}. (15) 

The positive sign gives Sm and nm which increase 
without limit for large m and 0., so the negative sign 
must be chosen for G. The constant So is determined 
by requiring that Eq. (12) be satisfied by Sl and S2 as 
given in Eq. (14). This value of So inserted into Eq. 
(14) provides the following simultaneous solution for 
Eqs. (12) and (13): 

S = _ sinh a _ 1 - 2e-b 
- (io.)-lsinha Gm . (16) 

m io. (1 - 2e-b)G + 2e-b 

The ac susceptibility in the presence of the dc bias 
field Eo is X = dP/dE, which for small Et reduces to 
(P - Peq)/Et , and from Eq. (2) P - Peq = 2flV-l X 

.2~=1 mnm · For large N the upper limit can be allowed 
to become infinite. Then, from Eq. (16), the sus­
ceptibility is found to be 

2fl 00 

X = - - .2 mnm 
VEt m=l 

4Cfl ~ S -2am 
= - -£..m me 

V m=l 

4N fl2(Je-2b ( 1 

= V 4io. sinh a 

1 - 2e-b 
- (io.)-l sinh a ) + . 

[1 + 2e-b
( G-1 

- 1) J( ea - e-aG)2 
(17) 

This expression can be better understood by 
considering various limiting cases. In the low-fre­
quency limit, G = (1 - io./sinh a - eao.2/2 sinh3 a + 
... ) to second order in 0., and substitution of this G 
gives X to first order in 0.: 

Nfl2(Je-2b cosh a 
X = 

!l~0 V sinh3 a 

X 1 - 10. + .... ( 
. 4 + e-2a + 4ea

-
b sinh a ) 

4 sinh2 a cosh a 

(18) 

The first term is the de susceptibility in the presence of 
a bias field Eo = a/ (Jfl. It agrees in the large-polariza­
tion limit (sinh a » e-b) with the exact value 

N fl2 (Je-2b cosh a 
Xexact (0. = 0) = ! (19) 

V(sinh2 a + e-2b) 

obtained by evaluating dP/dE using Eq. (5). The 
agreement is within 10% in the region to the right of 
the curved line in Fig. 1. This region within which the 
large polarization condition sinh (flEo/kT)>> e-2JlkT 
is valid includes three cases, as indicated in Fig. 1. 
The weak-coupling case has 2J« kT (b« 1), so a 
strong bias field is required for which flEo » kT (a » 
1). In this case there are many chains of down dipoles, 
but most of the chains are only one dipole long. The 
strong-coupling, strong-bias case (b » I, a » I) shows 
the smallest deviation from maximum polarization. 
The strong-coupling, weak-bias case (b» 1, e-b « 
a « I) results in relatively few chains of down dipoles 
having long average chain length since 

m = I mNm/I Nm = (eaf2) sinh a 

varies from 1 + e-a for a » I, to 1/2a for a « 1. 
To a good approximation, the susceptibility in Eq. 

(17) can be represented by two components Xf and Xs 
corresponding to fast and slow modes: 

X':::: Xfo/(1 + iW'Tf) + Xso/(1 + iWTs)' (20) 

The fast mode is governed by the frequency depend­
ence of the factor (1 - 2e-b + 2e-bG-l) in Eq. (17). 
The approximation eaG-l,:::: 2(cosh a + iQ) is valid 
under conditions for which this mode is active. This 
mode results from the field-induced shift of equilib­
rium between creation and annihilation of isolated 
down dipoles (m = 1 "chains"). The relaxation times 
for this mode form a narrow distribution around 
T f = (vea+b)-l for each of the three cases. This is the 
only mode which exists for the weak-coupling case 
and is the dominant mode for the b » 1, a » 1 case. 
For both cases, XfO':::: Xo, where Xo is the dc sus­
ceptibility given by the first term in Eq. (18). Because 
a» 1 for these cases, cosh a ':::: sinh a, and the large­
polarization condition sinh a »e-b requires that 
XfO« Nfl2(J/V. 

A comparison can be made with the results of 
Glauber's2 study of the zero-bias (a = 0) case, which 
of course does not satisfy the large-polarization 
condition. His flip probabilities ,are not exponential 
in the flip energy, but reduce to those used herein for 
b« 1. In this limit he finds X ~ Nfl2f3JV(1 + iw/2v), 
so his correlation time is (2V)-1. 

For the b » 1, a « 1 case, XfO falls off to 4a3xo. The 
susceptibility for this weak-bias case is dominated by 
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the slow mode, which is caused by the shifts in 
populations nm of existing chains of down dipoles. 
This mode has a narrow range of time constants near 
(4va2)-1 for this case, and Xso ~ Xo ~ Nfl2f3e-2b fVa3. 
The large-polarization condition requires that e-2bf 
a2 « I, but if a is in the lower part of its allowed 
range e-b « a « I, it is possible to have Xso » N fl2f3f 
V. If the coupling were turned off (b = 0), the exact 
expressions in Eqs. (19) and (5) show that Xso would 
drop to N fl2f3f V, and that the polarization would be 
near zero rather than near maximum. Accordingly, 
even in the presence of a dc field which aligns most of 
the dipoles, the ac susceptibility can show what 
Wannier3 has termed "enhanced paramagnetism." 

This work was undertaken in order to explain the 
unusual dielectric properties4•5 of lithium hydrazinum 
sulfate, which has generally been considered to 
be a ferroelectric. The structure6 contains ordered 
N-H ... N-H ... chains running along the "ferro­
electric" c axis. This biased one-dimensional Ising 
model seems quite applicable to the N-H dipole system 
if Eo is the effective field with which the noncentric 
structure tends to align the N-H dipoles. This model 
allows for polarization reversal of the N-H dipole sys­
tem if Eo can be overcome by an externally applied 
field smaller than the breakdown field; but it predicts 
no hysteresis in the dc limit and so is inconsistent with 
ferroelectric behavior. We have since determined that 
this crystal is not ferroelectric but that a mechanism 
other than dipolar reorientation dominates the di-

JOURNAL OF MATHEMATICAL PHYSICS 

electric behavior, at least below 10 MHz. This 
mechanism appears to be protonic conduction along 
the N-H" . N-H ... chains, with extrinsic barriers 
of random height partially blocking the flow. A de­
tailed account of this mechanism will be presented else­
where. There remains a significant difference between 
the susceptibilities at 10 MHz and 9.3 GHz. Experi­
mental study of the intervening frequency region 
could determine whether the effective bias field Eo and 
other parameters of this biased Ising model have the 
correct magnitudes to cause dielectric relaxation in 
this frequency range. 
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context of a general asymptotically flat space-time. The relevance of scale transformations to the sign 
of gravitational energy is discussed. Arguments for the positive-definiteness of gravitational energy are 
presented and criticized. 

1_ INTRODUCTION 

Einstein,l in one of his less well-known papers 
entitled "Demonstration of the Non-Existence of 
(vacuum) Gravitational Fields with a Non-Vanishing 
Total Mass Free of Singularities," pointed out a 
certain scaling property of the energy of asymptoti­
cally Schwarzschild space-times. Einstein's model of 

radiative space-times was oversimplified, and at 
present the claim made in the title of his paper is 
widely thought to be wrong. The energy scaling 
property, however, does have a general validity and, 
as we show in Sec. 2, can be extended to energy 
expressions formulated in terms of more recent con­
cepts of asymptotic flatness. 
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radiative space-times was oversimplified, and at 
present the claim made in the title of his paper is 
widely thought to be wrong. The energy scaling 
property, however, does have a general validity and, 
as we show in Sec. 2, can be extended to energy 
expressions formulated in terms of more recent con­
cepts of asymptotic flatness. 
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Einstein used this scaling property as part of a 
variational argument which has many features in 
common with recent arguments of Brill, Deser, and 
Faddeev2- 4 for the positive-definiteness of gravita­
tional energy. These latter arguments, however, are 
also incomplete. In Secs. 3 and 4, we discuss the 
implications of energy scaling for the positive­
definiteness problem. We show that the arguments of 
Brill, Deser, and Faddeev can be strengthened, but 
that the final step still involves an apparently unjusti­
fied application of finite-dimensional theorems to 
function space. 

For the purpose of brevity, we concentrate on 
vacuum space-times. Although all our results have 
straightforward generalizations to the nonvacuum 
case, it is in the vacuum case that the possibility of 
negative energy is best isolated. Physically reasonable 
macroscopic sources have positive-definite energy 
densities, but there is not even any clear-cut local 
concept of gravitational energy density. This paper 
deals with the global concept of total gravitational 
energy. 

2. ENERGY SCALING 

Einstein's derivation of the energy scaling property 
can be restated in the following way. Consider two 
Schwarzschild line elements dSl and dS2 with masses 
ml and m2 , such that 

ds~ = (1 - 2mdr) dt2 - (1 - 2ml/rrl dr2 
- r2(d(J2 + sin2 (J dq}) 

and 

ds~ = (1 - 2m2/r) dt2 - (1 - 2m2/r)-l dr2 

- r2(d(J2 + sin2 (J drl). 

By means of the transformation 

t = (ml/m2)T, r = (mllm2)R, 

we arrive at the conformal correspondence 

dSl = (ml/m2) ds2· (2.1) 

That is to say, two Schwarzschild geometries with 
different masses are conform ally related by a constant 
scale factor equal to the ratio of their masses. It 
follows, when the asymptotic concepts involved can 
be legitimately defined, that the same result applies in 
an asymptotic sense to two asymptotically Schwarz­
schild space-times. Furthermore, asymptotic structure 
and Einstein's vacuum field equations are preserved by 
scale transformations such as in Eq. (2.1). Hence, 
given one solution with the appropriate asymptotic 
structure, we may construct a one-parameter family 
of solutions with similar asymptotic structure but with 
varying mass. Einstein used this result in an infinitesi-

mal form to establish the nonvanishing of the varia­
tion of mass with geometry: 

~m =;t. 0, unless m = 0, (2.2) 
~gpv 

where the variation is with respect to changes in 
geometry preserving Einstein's equations and the 
asymptotic Schwarzschild structure. Clearly, the 
one-parameter family of scale related geometries 
associated with any solution is sufficient to establish 
this result. The exception to Eq. (2.2) occurs when 
m = 0, in which case Eq. (2.1) is no longer applicable. 

More generally, consider a space-time which is 
asymptotically flat in the limit of null infinity, as 
described in the treatments of Sachs,5 of Bondi, 
van der Burg, and Metzner,6 and of Newman and 
Penrose. 7 Each outgoing null hypersurface with 
topologically spherical cross-sections determines a 
retarded time ~+ at future null infinity. According to 
Penrose's conformal picture of null infinity,S we may 
visualize ~+ to be a sphere at future null infinity. To 
each generator of the Bondi-Metzner-Sachs6.9 asymp­
totic symmetry group at null infinity there corresponds 
a descriptor field ~p defined on ~+. These can be used 
to form the asymptotic symmetry linkages1o •ll 

Ls(~+) = i (~[p:vl - e; pWV) dSpv , (2.3) 
Jr+ 

where NPV is the unit bivector normal to ~+. In 
particular, for time translational generators this 
procedure correctly determines the total energy 
E(~+) at retarded time ~+ to within the usual freedom 
of a Lorentz transformation. Complete details may be 
found in Refs. 10 and 11. Energy here corresponds to 
active gravitational mass in the same sense as the 
Schwarzschild mass. However, whereas, in the asymp­
totically Schwarzschild case envisaged by Einstein, 
the Schwarzschild mass describes the energy measured 
at spatial infinity, E(~+) describes the energy measured 
at spatial infinity minus the energy which has been 
radiated away to null infinity by zero-rest-mass fields 
prior to the retarded time ~+. 

With each asymptotically flat solution gpy(xa) of 
the vacuum Einstein equations with energy E(~+), 
we now associate the one-parameter family of 
asymptotically flat solutions 

gpv(xa, li,) = li,2gpv(Xa) (2.4) 

with energies Ei~+). Under this scale transformation 
the metrical quantities involved in Eq. (2.3) transform 
as is customary under conformal transformations. 
Special consideration must be given to the scale 
transformation properties of the descriptor field ~p. 
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The generators of symmetry transformations them­
selves possess scale transformation freedom. Con­
ventionally, in special relativity the descriptor of, 
say, a unit time translation is normalized by ;1' = 
(1,0, 0, 0) in the coordinate system xa

, in which the 
metric takes the standard Minkowski form 1Jpv' Then 
in the coordinate system ya = A-1Xa the metric takes 
the form A21Jpv, and the descriptor of a unit time 
translation takes the form (A-I, 0, 0, 0). To consist­
ently apply this convention, we must then demand 
that a unit time translation in the geometry A21Jpv be 
given by ;1' = (A-I, 0, 0, 0). Applying exactly the same 
considerations at null infinity to asymptotically flat 
geometries leads us to require 

for the descriptors of unit symmetry transformations 
associated with the two geometries in Eq. (2.4). This 
is the appropriate scale transformation law for trans­
forming the linkage integrals if physical quantities 
such as energy are to remain associated with genera­
tors of unit translations in the proper way. By carrying 
out the scale transformation of Eq. (2.3), we now 
obtain 

(2.5) 

which becomes, for infinitesimal scale transformations, 

(2.6) 

In a manner analogous to Eq. (2.2), this establishes the 
nonvanishing of the variation of energy with respect 
to variations in geometry which preserve Einstein's 
equations and asymptotic flatness, 

I'JE :;e: 0, unless E = O. (2.7) 
bgpv 

By considering either infinitely past retarded times 
at future null infinity or infinitely future advanced 
times at past null infinity, Eqs. (2.5)-(2.7) can be 
extended to the energy evaluated at spatial infinity. 
This can also be done in terms of a spacelike approach 
to spatial infinity by means of the treatment of Arno­
witt, Deser, and Misner.12 However, while all these 
limiting processes lead to the same definition of energy 
at spatial infinity in stationary space-times, the con­
ditions for their equivalence in radiative space-times 
has not been clearly established. Equations (2.5)-(2.7) 
also apply to the momenta, angular momenta, and 
supermomenta associated with the remaining genera­
tors of the Bondi-Metzner-Sachs group.1o.l1 

3. THE ZERO ENERGY LIMIT 
Brill and Deser2.3 have shown that the energy 

measured at spatial infinity has a strict minimum of 
zero energy at flat space with respect to variations of 
the geometry. A similar result holds for the energy 
measured at null infinity.13 Brill and Deser2.3 and 
Brill, Deser, and Faddeev4 attempted to extend this 
result to prove the positive-definiteness of the energy 
of nonsingular vacuum gravitational fields without 
any weak field qualifications. In this effort, they 
derived variational results equivalent to the applica­
tion of Eq. (2.7) to the constraint problem of a space­
like Cauchy hypersurface.14 They established that the 
energy has no critical points as a functional of the 
geometry except a strict minimum of zero energy at 
flat space. In one dimension, a smooth function with 
a strict minimum at the value zero and no other 
critical points is strictly positive except at the mini­
mum. It was conjectured that this result could be 
extended to the function space of the energy functional. 
However, even in two dimensions, counterexamples 
to this conjecture were constructed by Geroch (see 
Appendix A). 

On the other hand, Eq. (2.6) does provide a one­
parameter path of geometries along which the energy 
increases monotonically for increasing It. This 
feature could be used to establish the positive­
definiteness of the energy provided that this path 
approached the minimum at flat space in a suitable 
way in the limit A ~ O. The limit obtained directly 
from Eq. (2.4) by keeping the space-time points 
fixed as A ~ 0 is clearly pathological. However, as 
Geroch15 has emphasized, a great deal of ambiguity 
exists in the possible limits of a one-parameter family 
of space-times. This ambiguity corresponds to the 
freedom in the way points in neighboring space­
times are associated as the parameter varies. By such 
considerations, Geroch has shown that one possible 
limit for the Schwarzschild geometry as m ~ 0 is 
Minkowski space with no singular points. This is 
achieved by displacing the singular regions of the 
Schwarzschild manifold to infinity as the limit is taken. 
Since varying the Schwarzschild mass corresponds to 
a scale transformation as in Eq. (2.1), it is conceivable 
that for some choice of limiting operation all one­
parameter families of nonsingular vacuum geometries 
generated by scale transformations approach flat 
space as A ~ O. 

However, even the validity of this plausible conjec­
ture would not be sufficient to complete the argument 
for positive-definiteness. The proof that E(~+) has a 
minimum at flat space relies upon ~+ being a topologi­
cally spherical surface at null or spatial infinity which 
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surrounds a nonsingular interior. This property of 
I;+ is necessary in order to apply the Gauss theorem 
to convert the two-dimensional energy integral at 
infinity into a three-dimensional integral over a null 
or spacelike hypersurface spanning I;+. In order to 
apply the minimum at flat space to the energy of a 
particular one-parameter family of geometries ap­
proaching flat space, this property of I;+ must be 
maintained in the limit. This is not true of the above­
mentioned flat space limit of the Schwarzschild 
geometry, in which I;+ is missing points at infinity, to 
which the singularity is displaced in the limit m ---+ O. 

We now show more generally that this property of 
I;+ is not maintained in the scaling limit A ---+ O. 
Consider the Weyl tensor scalar 

S = CI'VPGCI'VPG 

associated with the asymptotically flat vacuum 
metric gl'/x~). To each scaled metric gl'vCx~, A) given 
by Eq. (2.4) corresponds the analogous invariant S)., 
which satisfies 

S). = A-4S. 

In the manifold M with geometry gl'v, let (J be any 
spacelike hypersurface spanning I;+. We form the 
invariant integral 

I = iSd3V, 
where d3V is the usual scalar volume element. This 
integral converges for any nonsingular asymptotically 
flat space-time. In each member of the one-parameter 
family of scale related manifolds M)., we repeat this 
construction on the hypersurface (J,\ corresponding 
conformally to the original hyper surface (J. From the 
scale behavior of volume elements 

d3 V). = A3d3V, 
we find 

I). = A-II. 

In the limit A ---+ 0, the invariant diverges and hence 
all spanning spacelike hypersurfaces develop singu­
larities. The null hypersurface N spanning I;+ (when 
I;+ is at null infinity) can be treated in a similar way 
by introducing the scalar measure 

d3M = pmI' dVI" 

where dVI' is the usual vector volume element on N, 
p is the divergence of the null vector field kl' generating 
N, and ml' is an arbitrary vector field pointing out of 
N whose extension is fixed by 

(3.1) 

The definition of d3 M is insensitive to the remaining 

freedom in mI'. We construct the invariant integral 

J = LSd3
M, 

where the integration over N extends from the outer­
most caustic along each generator out to I;+. Again it 
is easy to check that the integral converges for any 
nonsingular asymptotically flat space-time. We repeat 
this construction in the one-parameter family of 
manifolds M).. The normalization given by Eq. (3.1) 
is maintained in this process. This leads to the scale 
behavior 

and 

Again in the limit A ---+ 0 the invariant diverges, and 
hence all spanning hypersurfaces develop singularities. 
We conclude that the one-parameter family of scale 
related geometries cannot approach flat space in a 
way which can be used to establish the positive­
definiteness of the energy. 

4. A FINITE-DIMENSIONAL ARGUMENT 

Although the one-parameter family of scale-related 
geometries cannot be used to construct a one-dimen­
sional variational argument for the positive-definite­
ness of gravitational energy, it does provide the basis 
for an argument resting upon multidimensional 
techniques. This would establish positive-definiteness 
provided certain finite-dimensional results were appli­
cable to the function space of geometries. We first 
proceed as if this function space were finite dimensional 
and then analyze the shortcomings of this assumption. 

Suppose G were an asymptotically flat vacuum 
geometry with negative energy 

E(G) < O. 

Let F denote flat space, so that 

E(F) = O. 

(4.1) 

(4.2) 

Consider the set of paths in function space connecting 
Fto G. Along each path the energy attains a maximum. 
A lower bound of zero for the maximum is provided 
by flat space. Let m be the greatest lower bound of the 
energy maximum on the set of all paths from F to G. 
Because there is a strict local minimum at flat space, 
we have (in the finite dimensional case) m > O. 
Although this greatest lower bound may not be 
attained by any particular path, for arbitrarily small 
positive e there exists a path whose maximum energy 
is (1 + e)m. According to the assumption in Eq. (4.1) 
this maximum must be an interior point of the path. 
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(I-E)m ---FIG. I. The deformed 
path is obtained by re- F 
placing the segment 
[G1 , G2l by the segments 
[G1 , Gal along which A 
varies from I to !, 
[Ga, G.l along which 

I 
I 
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A =!, and [G., G2] 

along which A varies 
from! to I. 

2 "'-. 4; 
(I+E);-- (i2)m 

2 2 

We can surround it with points Gl and G2 whose 
energy is (1 - E)m such that (1 - E)m is the maximum 
energy in the end segments [F, Gl ] and [G 2 , G]. We 
now construct a new path from F to G by scale trans­
forming the interior segment [G l , G2], with the scale 
factor A ranging from 1 to t. The deformed path is 
illustrated in Fig. 1. It has maximum energy (1 - E)m. 
But m was the greatest lower bound on the energy 
maxima so that we have reached a contradiction. 

If our problem were really a finite-dimensional one, 
we could conclude that the initial assumption of 
negative energy in Eq. (3.1) is incompatible with the 
properties of a nonsingular asymptotically flat vacuum 
space-time. However, there is one critical aspect of 
the above argument which depends upon finite­
dimensional analysis and cannot be extended to 
function space in any straightforward way. This is the 
intermediate conclusion m > 0 drawn from the 
existence of the strict local minimum at F. Let (t, IX) 

coordinatize points in the neighborhood of F, with F 
given by the parameter t = 0 and the set IX representing 
the directions emanating from F. Along each path 
IX = const there is a number fa such that the energy is 
positive for t ~ ta' In the finite-dimensional case, the 
set IX is compact and consequently the set {ta} possesses 
a nonzero minimum. But,in function space, IX is a 
noncom pact set and the possibility arises that zero is 
the greatest lower bound of the set {ta}' 

The possibility m = 0 prohibits drawing any con­
clusions from our finite-dimensional argument. The 
importance of this argument is that it reduces the 
question of positive-definiteness to an examination 
of the properties of some neighborhood of flat space. 
The results of this paper are quite insensitive to any 
particular choice of topological structure on the 
function space of geometries. It remains to be seen 
whether some proper choice leads to a nonzero lower 
bound for the energy on a small surface surrounding 
flat space. 
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FIG. 2. The infinite 
plane is represented 
as the interior of a 
circle. The critical 
points X are removed 
by deleting the closed 
regions bounded by 
solid lines from the 
plane. 
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Suppose a smooth function in n-dimensional 
Euclidean space satisfies the following four properties; 

(1) f(O) = 0; 
(2) fiCO) = 0; 
(3) fii(O)xixi > 0 unless xi = 0; 
(4) f;(xi);i: 0 unless Xi = O. 

Then only in the case n = 1 can one conclude 
f(x i

) ~ O. The generic method of constructing counter­
examples due to Geroch is best illustrated in two 
dimensions. The Euclidean plane can be represented 
by the interior of the unit circle. It is easy to construct 
functions with negative regions if we allow other 
critical points X besides the strict local minimum at O. 
The points X can be surrounded by closed regions of 
arbitrarily small size which can be removed from the 
plane without changing its topology (see Fig. 2). The 
remaining manifold contains no critical points except 
o but still contains negative regions. Since the remain­
ing manifold is diffeomorphic to the infinite Euclidean 
plane, this establishes the counterexample. 

Note that if we replace property (4) by the condition 
thatf(xi ) be homogeneous of degree 2 in the variables 
Xi, then the result f(xi) ~ 0 holds in n dimensions. 
This is the essence of the finite-dimensional argument 
in Sec. 4. 
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The canonical partition function Q(H, N, s) for a spin-s anisotropic Heisenberg model with N sites, 
in external magnetic field H, is examined in the limit s -+ 00. The coupling coefficients and the magnetic 
moment per spin are taken to be inversely proportional to S2 and s, respectively. It is proved that 

lim rNQ(H, N, s) = (2rr)-NQ(H, N), 

where Q(H, N) is the partition function for a corresponding classical Heisenberg model with spins of 
unit magnitude. This theorem makes precise the widely believed, but heretofore unproved equivalence 
between the classical Heisenberg model and the infinite-spin limit of the quantum Heisenberg model. 
No appeal to the thermodynamic limit is necessary. 

I. INTRODUCTION 

Classical Ising and Heisenberg systems have been 
the subject of numerous investigations in recent 
years.1- 3 It is commonly believed that these continuum 
models represent, in some sense, the infinite spin 
limits of their quantum mechanical counterparts. 
Fisher1 has given a precise definition of the infinite­
spin limit, and has discussed the limiting forms of 
the spin operator commutation relations and of the 
Hamiltonian operator for an isotropic Heisenberg 
model. Using a similar definition, Griffiths2 has 
pointed out that the infinite-spin limit of the canonical 
partition function for the quantum Ising model (with 
certain necessary multiplicative factors) is equal to 
the classical Ising partition function. This observation 
is based on the definition of a Riemann integral as 
the limit of its approximating series. The proof is 
direct because the eigenvalues of the Ising Hamiltonian 
are known explicitly, so that the partition function 
can be written immediately in a useful series form. 

For the anisotropic Heisenberg model, the eigen­
values are not known explicitly, and an immediate 
useful series representation of the partition function 
does not seem possible. Thus, while it is clearly 
suggestive that the classical, continuum model is 
related to the infinite-spin limit of the corresponding 
quantum mechanical model, a simple proof is not 
apparent. To our knowledge, no rigorous proof, 
simple or complex, has been published with regard to 
the general, anisotropic Heisenberg model. The 
objective of this paper is to present such a proof. 

II. STATEMENT OF THE THEOREM 

Consider the Hamiltonian 

N 4-. 4-'! N 4-; k 
JeN = -i:2 '2,]i,kl....!.:.!5..-'-· - #.:2 :2Hi -', 

;="'.11.' k*! S S i-"'.lI.' k=l S 

for a system containing N spins, with spin quantum 
number s ~ t, on some lattice, in one, two, or three 
dimensions. 4-i.k represents the ith component of the 
spin operator for site k, and H = (H"" HlI , H.) 
represents a uniform external magnetic field. (Ji,lel/S2) 
and (#/s) are, in effect, a typical interspin coupling 
constant and the magnetic moment per spin, respec~ 
tively. The inverse s dependence was introduced 
first by Fisherl and was used subsequently by Griffiths2 

with regard to the Ising Model. It assures the existence 
of s-N Q(H, N, 8) in the infinite-spin limit, where 
Q(H, N,8) is the canonical partition function, 
defined by 

Q(H, N, 8) = Tr exp (-(3JeN). (2) 

By convention, the spin label 8 in Q(H, N, s) denotes 
that this is the quantum partition function. 

For the corresponding classical Heisenberg model, 
the object 4-i.k!8 in Eq. (1) is interpreted as the ith 
component of the spin vector for site k. For con­
venience, each such vector is chosen to have unit 
magnitude; i.e., 4-i.k/8 -+ Si,lc' with 

(3) 

The canonical partition function for the classical case 
is 

Q(H, N) = LdSl •• ·LdSN exp (-(3))N)' (4) 

where each integral runs over the solid angle Q = 41T 
steradians. Introducing spherical coordinates at each 
site, 

S",.k = sin Ok cos tPk' 

Sll.k = sin Ok sin o/k' 

S •. k = cos Ok' 

(Sa) 

(Sb) 

(Sc) 

we see that the classical Hamiltonian ))N is simply 
N N 

(1) 

1000 

))N = -!:2 :2Ji./clSi.kS;.I- #.:2H. Sk' (6) 
;="',11.' k"'l k=l 
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Each integral in Eq. (4) is of the form 

L dSk ( ) = flY dCPk f' dOk sin Ok ( ). (7) 

Theorem: For the quantum and classical anisotropic 
Heisenberg systems defined by Eqs, (1)-(6), 

lim s-NQ(H, N, s) = (27T)-NQ(H, N). (8) 
S'" 00 

III. PROOF OF THE THEOREM 

We choose to evaluate the trace in (2) using the 
basis whose elements are the direct products of single­
site eigenvectors of 4. and (4~ + 4~ + 4;). Let 
ISz,k) be the normalized eigenvector corresponding to 
site k. It has simultaneous eigenvalues Sz,k and s(s + 1), 
but the S label is suppressed for simplicity. The 
chosen basis for our N site system is the ortho­
normal set of vectors 

(9) 
k 

for all possible choices of the eigenvalues {S.,k} and 
fixed s. 

Raising and lowering operators are now introduced 
as follows: 

(10) 

or, equivalently, 

4",k = t(4 u + 4_.k), (11a) 

4 11 .k = (2i)-1(4U - 4_.k)' (Ub) 

The operation of these operators on the basis elements 
gives the following results: 

4 •. k IS •. k) = S •. k IS •. k)' (12a) 

4±,k IS •. k) = [s(s + 1) - S •. k(S •. k ± 1)]lls •. k ± 1). 

(12b) 

Note that S •. k can take on the (2s + 1) values s, 
S - 1,' .. ,-S. The Hamiltonian, defined by (1), 
can now be written entirely in terms of these three 
operators: 

The operators in (13) satisfy the following commuta­
tion relations: 

[
4. , 4±J = ± ~ 4± , (14a) 
S S S S 

[
4+ 4_J 24. -,- =--. 

S S S S 
(14b) 

We now note the following property: For any 
product Il! of the operators 4 z/S and 4±/S, k = 1, 
... ,N, containing at most a total of 21 factors we 
have 

i<{sz.k}IIl! I{SZ.k})i ~ [2(s + 1)/s]! ~ 6!. (15) 

The validity of (15) follows immediately from (12) 
for S ~ t. From (13) it is clear that the highest-order 
product operator contained in the Hamiltonian is 
21 = 2. Therefore, (13) and (15) together imply that 

i<{S •. k}1 JeN I{S •. k})i ~ 6W(N), (16) 

where 
N N 

WeN) = t ~ ~ IJi.k!1 + {t ~ ~IHi.kl. (17) 
i=".1I.' k*! ;=".11,' k=l 

The quantity WeN) is useful in obtaining upper and 
lower bounds for <{s •. k}1 (JeNYI{s •. k})' as developed 
below. 

We assume all the coupling constants and the 
magnetic field in (1) are finite. Then,for finite N, the 
quantity WeN) must also be finite and, of course, 
independent of s, This assumption is the only restric­
tion placed on the coupling constants and magnetic 
field in the proof of the stated equivalence theorem. 

We now obtain upper and lower bounds for 
S-N Q(H, N, s). First, we expand the exponential4 in 
(2): 

s-NQ(H, N, s) 

= S-N ~ ({sz.k}1 exp (-(JJeN) I{S •. k}) 
{S •• k} 

00 1 
= S-N{s~}!~ l! <{S •. k} I (-(JJeNY I{S •. k})' (18) 

The first summation in (18) is over all possible values 
of the eigenvalue set {S •. k}' There are (2s + I)N terms 
in this sum, where each S •• k can take on values 
s, S - 1, ... , -So 

We now examine a term of the form 

<{s •. k}1 (- /3JeNYI{s •. k})· 

We can think of expanding (JeN )' , using (13), 
so that we obtain a sum of terms consisting of a 
purely rell:l coefficient r~j) (or a purely imaginary coeffi­
cient, r~'») multiplied by a product operator Ilin. 
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Symbolically, the expansion of (JeN )! is of the form 

(19) 

The product operator [as in (I5)] is a product of the 
operators 4 •. k/S, 4+.k/S, 4_.k/S, k = 1,2, ... , N, con­
sisting of at most 21 factors. Note that if in the above 
expression each operator product is replaced by 
unity and r;l) and r:k) are replaced by their magni­
tudes, the resulting expression is 

I W~j)1 + I Ir?)1 = [W(NW, (20) 
1 k 

where WeN) is defined by (17). This identity is useful 
in what follows. 

We observe two properties of the expectation value, 
({s •. k}1 (-(JJeN)! I{S •. k})' where (JeN)! is given by (19): 

(i) Only product operators with equal numbers of 
raising and lowering operators for each site can be 
nonzero. 

(ii) The expectation value of the second term on 
the right-hand side of (19) is zero. 

Property (i) follows from (12) plus the orthonormality 
of the basis vectors. Property (ii) is obtained from the 
following argument. Since JeN [and therefore (JeN)!] 
is Hermitian, the expectation value of Je},,- must be 
real. But, by (12), the expectation value of any product 
operator is real. We thus conclude [property (ii)] that 
the sum of ail terms with purely imaginary coefficients 
must be zero. 

We define an "ordered product" of operators in 
the following way. Let II! be a product of at most 21 
operators 4±.k/S and 4z.k/S, 1 S k S N, containing 
an equal number of 4+.k and 4_.k operators for each k. 
The ordered product (II!)ord is defined such that, for 
each k, a raising operator 4+.k/S must be followed 
immediately to its left by a lowering operator 4_.ds. 
The order in which these pairs appear is, of course, 
irrelevant. It is always possible to write 

II! = (II!)ord + A!, (21) 

where A! contains all terms resulting from the use of 
the commutation relations (14). Since there are at 
most 21 factors making up II!, the ordering procedure 
involves fewer than (21)2 permutations. A! then 
consists of fewer than (2/)2 terms, each with a number 
of factors equal to one less than the number of factors 
contained in II!. Each term in A! has a coefficient 
equal to ±1/s or ±2/s due to the commutation 
relations (14). 

Now, suppose that in the expansion of Jelv we 
focus attention on the jth term, of the form r;iln:j), 
where n~j) has equal numbers of raising and lowering 

operators for each site. We wish to bound the corre­
sponding expectation value r;j) ({S •. k}l II~l) I{s •. k}) 
above and below in terms of the quantity 

r;j) ({ Sz .k} I (II:j)ord I {s •. k})' 

But from the previous discussion, the magnitude of 
({s •. k}1 A~j) I {S •. k} ) is bounded above by (2/)2(2js)(6)!. 
This bound is obtained since there are at most (2/)2 
terms in A~j), each resulting from a single application 
of the commutation relations (14); thus, the (2Is) 
factor. Finally, the factor (6)! comes from (15) since 
each term in A~j) is a product operator with fewer than 
21 factors. We conclude that 

(-{J)!r~j) ({sz.k}1 (II:j)ord I {S •. k}) - Cu 
S (-{J)!r;j) ({sz.k}1 II/(j) I{sz.k}) 

S (-(J)lr;j) ({ Sz.k} I (n!(j)ord \{ S •. k}) + cu , (22a) 

where 

C!,j = (21)2(2/s)(6fJ)! Ir;j)I. (22b) 

Such an inequality must hold for each possible 
"surviving" term [i.e., any term which is not zero 
a priori due to (i) or (ii)] in the e~pansion (19). 

We define the scalar quantity III which is obtained 
by making the replacements 

and 

where 

I it/>. 4+.k s - crke , 

4_.k/S - crke-it/>\ 

(23a) 

(23b) 

(24) 

crk = S-l[S(S + 1) - S •. k(S •. k + I)]! (25) 

in the product operator II!. We then note the identity 

({s •. k}1 (II!)ord I {S.,k}) = ~ {21T dtPl ... {21TdtPN1\. 
(27T) Jo Jo 

(26) 

This equality follows because (a) Eq. (l2b) implies that 

S-2 (s.,kI4_.k4+.k IS •. k) = crZ (27) 

and (b) the operator (II!)ord has equal numbers of 
raising and lowering operators for each site, and the 
pair operator becomes 

(4_.k/S)(4+.kls) - crZe-it/>keit/>k = a!. (28) 

The preceding argument shows that expression (22) 
can be written as 
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provided that II);) has equal numbers of raising and 
lowering operators for each site. In fact, (29) is valid 
in general. To see this, suppose that IIii) does not 
have equal numbers of raising and lowering operators. 
Then ({sz.k}1 II:;) I{SZ.k} > is zero by property (i) above. 
But, if, for such a IIii), the replacements (23)-(25) are 
made, then 

[2" [2,,_ 
(27T)-N Jo d1>1" 'Jo d1>NIIlil = O. (30) 

This follows, since fIl;) then contains at least one 
factor of the form e±ilh, integrated from 0 to 27T. We 
thus conclude that expression (29) is valid in general. 

Summing over all j in expression (29), we find 

(-{1)Z(27T)-Ni
21rd

1>1" 'f"d1>N(tr~ilfIl;») - tcz.; 

~ ({sz.k}1 (-{1JeN)ZI{sz.k}> 

~ (-t1)Z(27T)-N f"d1>l" ·f"d1>N 

X (t r~;)fIl;») + t cz.;. (31) 

The term ({Sz.k} I (-{1JeN)ZI{sZ.k}> follows from prop­
erty (ii) above. Using (20), we can write (31) as 

(-{1Y(27T)-N i
2
"d1>1 .. ·f"d1>N(t r;ilfIlil) - Cz 

~ ({sz.k}1 (-{1JeNY I{SZ.k}> 

~ (-{1)Z(27T)-N fIr d1>1 .. 'l2" d1>N 

where 

X (t r~j)fIl;») + Cz, (32a) 

Cz = (2l)2(2js)(6{1)Z[W(N)]Z. (32b) 

If the replacements (23)-(25) are made in the 
Hamiltonian (13), we obtain the scalar quantity 

N 

~N({SZ.k}) = -i I [!J",.kZO'kO'z(eit/>k + e-it/>k)(eit/>! + e-it/>,) 
k*Z 

- 1J 0' 0' (eit/>k _ e-it/>k)(eit/>! _ e-it/>l) 
4 y.kZ k Z 

+ J Z.kZS-2Sz.kSz.Z] 
N 

- fl I [tH",O'iit/>k + e-it/>k) 
k~1 

- iiHyO'iit/>k - e-it/>k) + H zS-1Sz .k ]. (33) 

In a manner similar to (19), the expansion of (.f)N)Z 
can be written symbolically as 

(.f)N)1 = I r~j)f£i;) + L r~k)fW). (34) 
j k 

We now note that ~N is a real function, i.e., 

~t = ~N' (35) 

We thus conclude that (27T)-N f~" d1>l ... f~" d1>N(f>NY 

must be purely real. Further, in (34) the product filk
) 

represents a product of complex exponentials, and 
the multiple 1>-integral over each such product is real. 
It follows that, since r?) is purely imaginary, 

(27T)-Nf"d1>1" ·f"d1>N(f r~k)fIlk») = O. (36) 

Adding this quantity to the upper and lower bounds 
in (32) and using (34), we find 

(27T)-N f" d1>l .. ·12"d1>N( -{1~N)1 - Cz 

~ ({sz.k}1 (-{1JeN)ZI{sZ.k}> 

~ (27TrN f"d1>l .. ·f"d1>N( -{1~N)Z + Cz· (37) 

Multiplying (37) by s-Njl!, summing over I, and 
using (18), we find 

(27TS)-N I [2" d1>l ... {2" d1>N 
{Sz.k} Jo Jo 

00 

X exp (-{1~N) + s-N I I ([ !)-1CZ ' (38) 
{sx.k}Z~O 

where the order of summation and integration have 
been interchanged.5 Since there are (2s + I)N terms 
in the summation over {SZ.k}, the use of (32b) yields 

00 1 
S-N I I-cz 

{Sz.k} 1~0 [ ! 

~ 2
3

(2S + l)N f.r. [6{1W(N)]Z 
S s l~d! 

23 00 [2 

~ - (4)N I - [6{1W(N)]Z 
S l~tl! 

= 2
3 

(4)N6{1W(N)[6{1W(N) + 1]e6PW (N). (39) 
s 

The third line in (39) is obtained by setting S = t 
in the factor (2s + I)js. We can then conclude that, 
in the classical limit, 

00 1 
lim s-N I L - Cz = O. (40) 
s~ 00 (8z.k)l~0 I! 

Taking the limit s -+ 00 of (38), we find that the upper 
and lower bounds coalesce, so that 

lim s-NQ(H, N, s) = (27T)-N lim [2"d1>1'" f2"d1>N 
s-ct:> 8-00 Jo Jo 

X .L S-N exp (-{1~N)' (41) 
{S •• k} 
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where the order of integration and the finite summa­
tion have been interchanged. 

We now write (33) in a slightly different form for 
convenience in the remaining steps: 

_ N 

~N({ sz.i}) = -i I [J ",.k/O'kO'/ cos 1>k cos 1>/ 
k<F/ 

+ Jy.k/O'kO'/ sin 1>k sin 1>! + Jz.k/S-2sz.kSZ./] 
N 

- .uI [H"'O'k cos 1>k 
k=l 

+ H,Pk sin 1>k + HzS-lSz.k]' (42) 

From (17) and (42) we observe that 

I~N({Sz.i}1 ~ 2[(s + 1)/s]W(N) ~ 6W(N), (43) 

which implies the bound 

I - \ (2S + l)N .2 s-N exp (-(J~N) ~ -- exp [6{JW(N)] 
{S •• k) s 

~ 4N exp [6{JW(N)]. (44) 

We thus conclude that any term in the sequence 

.2 S-N exp (-{JfJN) as s -+ 00 
{S •. k) 

is uniformly bounded.6 

We now examine the limit of the sequence 

.2 s-N exp (-(JfJN)' for s -+ 00. 
{ ••. k) 

To do this, we define the quantities 

tk = Sz.k/S (45a) 

and 
A = I/s. (45b) 

Then, 

lim I S-N exp [-(Jf>N({SZ.k})] 
s .... 00 {S •• k) 

= lim .2 AN exp [-(J~N({tk})]' (46) 
,\ .... 0 {tk) 

where the sum on {tk } is over (2A-l + I)N terms such 
that 

tk = 1, 1 - A, 1 - 2A, ... , -1. 

But (46) is just the form of an N-dimensional Riemann 
integral. Thus7 

lim I S-N exp [-(J~N({Sz.k})] 
s .... 00 { •••• ) 

where 
N 

~N({ti}) = -i I[J",.k/(l - t~)!(1 - t~)! cos 1>k cos 1>/ 
k<F1 

+ Jy.k/(l - t~)!(1 - t~)! 
x sin 1>k sin 1>/ + J •. k/tktZ] 

N 

- .u 2: [H.,(1 - tZ)! cos 1>k 
k=l 

+ Hi1 - t~)! sin 1>k + Hh]· 

By defining tk = cos Ok' (47) becomes 

lim .2 s-N exp [-(J~N({SZ.k})] 
..... 00 h •.• ) 

(48) 

= {'sin e1 del' . ·E'sin eN deN exp (-{J~N)' (49) 

We note that ~N is equal to the classical Hamiltonian 
as given by (5) and (6). 

The sequence 

I s-N exp (-(Jf>N) as s -+ 00 
h •.• ) 

converges [by (47)] and is uniformly bounded [by 
(44)], and each term in the sequence and the limit of 
the sequence are both Riemann integrable over the 
{1>k} coordinates. We can then use Arzela's theoremS 
to commute the limit as s -+ 00 and the {1>k} integrals 
in (41). We thus find, using (4), 

lim s-NQ(H, N, s) 
..... 00 

= (27T)-N fn dSl .. -In dSN exp (- (J~N) 
= (27TrNQ(H, N), (50) 

which completes the proof. 

* Supported in part by the United States Atomic Energy Com­
mission. 
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in partial fulfillment of the Ph.D. degree, Case Western Reserve 
University, 1971. 
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4 A function f(A) of a Hermitian operator A may be defined as 
follows. Let {Iak)} represent the complete, orthonormal set of 
eigenvectors of k Then, (akif(A) la,) = f(ak)6" defines f(A) in 
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the eigenvector basis. For an arbitrary vector IV') = Lk ek I ak), one 
has <V'I f(A) IV') = Lk lekl' f(ak)' Now, choose f(A) = exp (A). 
Then, if lakl is finite for all k, 

00 (a )! 
(V'I exp (A) IV') = ~ !~O lekl' + . 

But the k- and I-summations can be interchanged. [See Theorem 
13-19 of T. Apostol, Mathematical Analysis (Addison-Wesley, 
Reading, Mass., 1957), p. 398.1 Thus, 

Choosing A = -flJeN,. and choosing {iak)} to be the eigenvector 
set for {4 •• k}, one obtains (18) for finite N. 

6 The interchange is valid since the series converges uniformly in 
the set {<pd, and each term is continuous. See, for example, E. C. 
Titchmarsh, The Theory of Functions (Oxford U.P., London, 1932), 
p.36. 

6 A sequence {fn(x)} is said to be uniformly bounded on a domain 
D if there exists an M > 0 such that I fn(x) I :::;; M for all x in D and 
all n = 1,2,···. 

7 To obtain Eq. (47), f)N is bounded above and below in terms of 
t>N and a term which depends upon Ll, but which is independent of 
the summation variables {S.,k}' From Eqs. (25) and (45) and the 
inequality 

at - bi :::;; (a + b)t :::;; at + bt , for a ~ 0, b ~ 0, 

JOURNAL OF MATHEMATICAL PHYSICS 

we obtain the bounds 

(I + t:)t - (2Ll)t :::;; ak :::;; (1 + t:)t + (2Ll)', 

[(I + t:)(1 + t~)lt - 2Ll!(2 + Llt) :::;; akal 

:::;; [(1 + t:)(1 + t~)lt + 2ill(2 + ill). 

Using Eqs. (17) and (48) and these bounds in Eq. (42), we obtain 

t>N - 2ill(2 + LlI)W(N):::;; ~N :::;; t>N+ 2Llt(2 + ill)W(N). 

The right-hand side of Eq. (46) is then bounded by 

lim {exp [-2flill(2 + Llt)W(N)]}( L LlN exp (-flt>N») 
.:l.~O _ {tk } 

:::;; lim ~ LlN exp (-flt>N) 
.:l.~O{tk} 

:::;; lim {exp [+2flLl!(2 + M)W(N)]}( L LlN exp (-flt>N»). 
.:l.~O {tk} 

Proceeding to the limit, we obtain Eq. (47). 
8 Arzela's Theorem: Assume {fn(x)} is boundedly convergent on 

[a, bl and suppose eachfn(x) is Riemann-integrable on [a, bl. Assume 
also that the limit function f(x) is Riemann-integrable on [a, bl. 
Then 

lim J,b fn(x) dx =J,b lim fn(x) dx =Jb f(x) dx. 
n-+oo a a n--..oo a 

See, for example, T. Apostol, Ref. 4, p. 405. See also W. W. Rogo­
sinski, Volume and Integral (Interscience, New York, 1962), Sec. 5.8. 
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An exact expression is obtained for the generating function of the N-fold (i.e., N-detector) photo­
electron counting distribution for cross-spectrally pure Gaussian light, in terms of the onefold generating 
function. It is assumed that the counting times at the different detectors are all equal, but not necessarily 
short compared to the coherence time of the light. In cases where the onefold generating function can 
be calculated, a closed formula for the N-fold generating function can be obtained. 

1. INTRODUCTION 

Considerable experimental and theoretical effort 
has recently been focused on determining the joint 
N-fold photoelectric counting distribution for various 
incident optical fields. I - 8 In an N-fold (i.e., N­
interval) counting experiment, one measures (or can 
obtain directly from the data) the probability 
PN(nI' t I , T I ; ... ; nN, tN, TN) that ni counts will be 
recorded by the first detector in a counting interval of 
length TI beginning at time t I ; ... ; nN counts by the 
Nth detector in the interval [tN' tN + TN]' (Some or 
all of the detectors may be identical.) Multiple coinci­
dence experiments9- I8 are essentially measurements of 
PN for the special case ni = n2 = ... = nN = l. 

For one detector (N = 1), both the probability 
distribution and the factorial moments of n = n1 can 
be calculated from the generating function 

§l(n; s) = «1 - s)n). 

An N-fold generating function can be similarly 
defined3.4: 

§N(nl, ... , nN; Sl, ... , SN) 

= «1 - SIt' ... (1 - sN)nN). 

In this paper we will derive an exact expression for §N 

in terms of §I, assuming that: (i) The light incident on 
the N detectors is Gaussian; (ii) the light is crc,s­
spectrally pure; (iii) all the counting intervals are 
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1. INTRODUCTION 

Considerable experimental and theoretical effort 
has recently been focused on determining the joint 
N-fold photoelectric counting distribution for various 
incident optical fields. I - 8 In an N-fold (i.e., N­
interval) counting experiment, one measures (or can 
obtain directly from the data) the probability 
PN(nI' t I , T I ; ... ; nN, tN, TN) that ni counts will be 
recorded by the first detector in a counting interval of 
length TI beginning at time t I ; ... ; nN counts by the 
Nth detector in the interval [tN' tN + TN]' (Some or 
all of the detectors may be identical.) Multiple coinci­
dence experiments9- I8 are essentially measurements of 
PN for the special case ni = n2 = ... = nN = l. 

For one detector (N = 1), both the probability 
distribution and the factorial moments of n = n1 can 
be calculated from the generating function 

§l(n; s) = «1 - s)n). 

An N-fold generating function can be similarly 
defined3.4: 

§N(nl, ... , nN; Sl, ... , SN) 

= «1 - SIt' ... (1 - sN)nN). 

In this paper we will derive an exact expression for §N 

in terms of §I, assuming that: (i) The light incident on 
the N detectors is Gaussian; (ii) the light is crc,s­
spectrally pure; (iii) all the counting intervals are 
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equal (Tj = T, j = 1, 2, ... ,N). As usual, it is 
assumed that the detectors are located at single points 
in space. Physically, this means that the area Of each 
detector is assumed to be small compared to a 
coherence area of the optical field. 

Approximate expressions for this N-fold generating 
function have been derived by Arecchi et al. 3 and 
Bedard,4 for the limit in which the counting time is 
short compared to the coherence time of the light. 
No such approximation is made here. Dialetis7 has 
shown that ~ N for the special case of N counting 
intervals at a single detector can be expressed as an 
infinite product involving the eigenvalues of a certain 
integral equation. The new contribution of this paper 
is, therefore, a procedure for calculating the joint 
N-fold photocounting distribution in terms of the 
simpler onefold distribution when the effects of finite 
counting time cannot be neglected. 

Note added in proof: The N-fold generating 
function has been expressed as an infinite product 
involving the eigenvalues of an N x N matrix integral 
equation by A. K. Jaiswal and C. L. Mehta, Phys. 
Rev. A 2, 2570 (1970), and A. Zardecki, Can. J. Phys. 
(to be published). 

2. DERIVATION 

Let 

V(rj, t) = Vit) = Vj , j = 1, 2, ... , N, 

be the values of the (complex) scalar optical field at the 
N detectors. We shall assume that these are Gaussian 
variables with zero mean value and with a given 
covariance matrix f: 

(f)jk = (VrVk)' 

The calculation of the N-fold photocount generating 
function3.4 

~N(n1' ... , nN; S1' ... , SN) = (IT (1 - Sjt;\1 
,~1 

depenqs on the identity4 

~N(n1' ... , nN; Sl' ••. , sN) 

= .M,(W1' ... , WN; -S1' ... ,-SN)' (1) 

which relates ~N to the N-fold moment-generating 
function 

<I(UT •• , W' S ••• s) - InN e-SiW;\ 
~f\) n'l' ,N' - 1, , - N - \j=l / 

for the integrated intensities at the N detectors: 

i
fi+T 

Wj = !x, lit) dt, 
t, 

where lj(t) = I Vj(t)12. (In the expression for Wj , !Xj is 
proportional to the quantum efficiency of the jth 
detector, so that (W,) = !Xj(lj)T = (n j), the mean 
number of counts recorded at the jth detector.) The 
moment generating function for the W's will now be 
calculated by an extension of the method used in the 
onefold case.15.19-21 

The functions Vj(t) are sample functions of N 
different (but statistically correlated) Gaussian random 
processes. Each V;{t) can be represented, on the 
interval [tj, tj + T], as a Karhunen-Loeve series19- 22 

! 00 1 

Vlt) = (q ! [A(l, j)]-'G(l,j)f(l, j; t). (2) 
I~O 

For a given j the quantities G(l,j) are independem 
complex Gaussian variables with mean zero and 
variance unity, 

(G(l,j)*G(l',j» = bll ,· (3) 

The functionsf(l,j; t) are solutions of the homogene­
ous Fredholm equations 

(ti+T 
Jt; YjlS - t)f(l,j; t) dt = A(l,j)f(l,j; s) (4) 

and are orthonormal on the interval [tj , tj + T]: 

(tl+T 
Jt; f(l,j; t)*f(l',j; t) dt = blZ" (5) 

In (4), 

Yiis - t) = Yiis, t) = «li)(lk»)-l(Vj(t)*Vk(s) 

is the usual normalized optical coherence function. 
In statistical terminology, Yii(t) is the normalized 
covariance of the random process Vit). 

For light which is cross-spectrally pure,23 

(6) 

for any T and for allj, k. This implies that the function 
Yi;(t), which is the Fourier transform of the spectral 
density, is the same for all the detectors. Then (4) is 
the same integral equation for every j = I, 2, ... , N, 
except for a translation of the time variables. The 
eigenfunctions and eigenvalues are therefore 

f(l,j; t) = fl(t - tj ), 

AU,j) = AI' 
where the functions !t(t) satisfy the integral equation 

iT Yi;(S - t)ftCt) dt = AzfrCs). (7) 

The average (G(l, j)*G(l',j'), which is needed for 
the evaluation of (1), can be calculated as foIlows24 : 
Solving (2) for 

G(l,j) = «(I;)Az)-liTftCt)*V;(t + tj) dt, 
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we find from (5) and (6) that 

(G(l, j)*G([',j') 

= (AzAzyk IT ITfzCt)fz'U')* 

x y;j'(!' - t - t; + tj') dt dt' 

= (AzAZ')-!y;j'(tj' - t;) 

x IT I Tfz(t)fz.(t')*y ;;(t' - t) dt dt' 

= y;j'(tj' - (;)r5zz" (8) 

In the representation (2), 

00 

Wi = !Y.Pi) I AzjG(l,jW, 
I~O 

and, according to (8), jG(l,j)j2 and jG(l',j')j2 are 
statistically independent for I ¥- l'. Thus the moment­
generating function for the integrated intensities is 

.M,(Wu· ", WN; -Sl," " -sN) 

= IT / IT e-Sj~;<I;)J.dG({,JlI2\ (9) 
z=o \i=1 / 

Each factor in (9) can be evaluated by simple calcu­
lations involving the N-variable complex Gaussian 
distribution,25 with the result 

/ IT e-s;a,<I;)J.;\Gll,;l\2\ _ jAj 
\;~l / - jA + 2AzSj 

(10) 

The vertical bars on the right-hand side indicate the 
determinant of the enclosed N x N matrix, and 

2A--l = y, (Y);k = y;itk - ti ), 

(S);k = r5 iksj!Y.j(Ii> = r5iksi (ni>IT. 

In order to effect another interchange of products over 
j und I in (9), it is convenient to express the right-hand 
side of (10) in terms of the eigenvalues of an N x N 
matrix. Since Yik = yti' the matrix A is Hermitian and 
can be diagonalized by a similarity transformation: 

U-1AU = D. (11) 

Because the eigenvalues of the matrix yare all strictly 
positive,26 the elements of the diagonal matrix Dare 
finite and strictly positive. Hence it is possible to define 
the diagonal matrix D!, with elements which are the 
positive square roots of the elements of D. We now 
have 

where 
(12) 

and therefore 

The matrix S' is Hermitian (for real S1, ••• , SN) 

and hence can be diagonalized by another similarity 
transformation. If o'~ , .•• , aN are the eigenvalues of 
S', then, from (10) and (13), 

.M,(W1' ... , T¥.'V; -Sl, ... , -SN) 

where 
00 

CI) N 

= IT IT (1 + Aza~)-l 
z~o i=l 

N 

= IT [de -a;W\ (14) 
i~l 

d(z) = IT (1 - AzZ). 
1~0 

The function d(z) is the Fredholm determinant of the 
kernel Yii(S - t) of the integral equation (7).27 
Equation (14) is the generalization to N-fold counting 
statistics of the well-known theorem that the generating 
function of the onefold photocounting distribution for 
Gaussian light is 

§l(n; s) = [de -s(n>IT)]-1. 

A physically more interesting interpretation is that 

[daIT)]-1 = .M,(w; ;), 

the moment-generating function for a single variable 

w = LTj V(t)j2 dt, 

where vet) is a complex Gaussian random process with 
zero mean and covariance 

(v(t)*v(S» = y;;{s - t), j = 1,2, ... , N. 

Within a scale factor, vet) has the same statistical 
properties as the optical field incident on anyone of 
the detectors. 

Equations (1) and (14) imply the main result of this 
paper, 

N 
§N(n1, ... , nN; Sl, ... ,sN) = IT [de -a;W1 (15) 

i~1 

= Id( _S')1-1 (16) 

= jd( _jiS)I-l
. (17) 

Since the Fredholm determinant d(z) is essentially the 
reciprocal of the onefold generating function, (IS) 
S''1'- ws how the N-fold photocounting statistics are 
determined by the onefold statistics and the mutual 
coherence functions Yj/c' The N x N matrix d( - S') in 
(16) is defined to be the same function of the matrix 
-S' as d(z) is of the single variable z. Equation (16) 
follows from (14) and (15) by the observation that the 
numbers d( - a~) are the eigenvalues of the matrix 
d( - S'). Equation (17) follows from (16) by expanding 
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d( -S') in a power series in27 S' and performing simple 
matrix manipulations. 

To compare this calculation with Bedard's results 
for short counting times, we note that (13) can be 
written in the form 

IAUIA + 2AzSI = 1//1 + AzYSI· 
For short counting times only one eigenvalue, .1.0 ~ T, 
makes an appreciable contribution to the infinite 
product over I. Equation (16) then reduces to the 
expression derived by Bedard.4 

If d(z) can be calculated in closed form, then (15)­
(17) can be used to calculate both PN and the joint 
factorial moments without any approximation involv­
ing the length of the counting interval. An exact 
result for these quantities can, in principle, be useful 
in at least two ways: 

(i) There are several approximate formulas for the 
onefold probability distribution PI' 15.28.29 which, in the 
future, it may prove possible to generalize to the N­
fold case. Equation (15) allows one to evaluate these 
approximations. 

(ii) In a photocounting experiment, where the object 
is to gain information on the statistics of the incident 
optical field, it is customary to extrapolate the measured 
P N to zero counting times. Exact results for P N or its 
moments facilitate this correction. 

In practice (15)-( 17) are not likely to prove particu­
larly convenient for either purpose. Obtaining the 
eigenvalues of the N x N matrix S' and then differ­
entiating (15) is a considerable task. Evaluating (16) or 
(17) is no easier. In addition, it is not possible to 
calculate d(z) in closed form for a general spectral 
distribution of the incident light. Alternatively, there 
are formulas which express the N-fold cumulants of 
the integrated intensities Wj as linear combinations of 
the cumulants of the photocounts nj • 

8 For finite 
counting times the cumulants are related [through 
integrals involving the function y,,(t)] to the cumu­
lants for zero counting times, in a way which is valid 
for any spectral distribution. In the onefold case the 
cumulants have proven to be convenient for evaluating 
approximate probability distributions28 and for making 
the correction for finite counting times29

•
30

; the same 
will probably be true in N-fold experiments. The 
interest and the usefulness of (15)-( 17) are expected to 
be mainly theoretical, in showing compactly how the 
photo-counting statistics of Gaussian light at a single 
detector and in a single counting interval determine 

the counting statistics at N detectors and N counting 
intervals of equal length. 
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Matrix elements of the Lie algebra generators of the de Sitter group 0(3, 2) are explicitly constructed 
on a basis in which the Casimir operators of the homogeneous Lorentz group are diagonal. As an applica­
tion, a class of Hermitian representations of the algebra are obtained. 

1. INTRODUCTION 

In the following, we give an explicit construction of 
the matrix elements of the "translation like" genera­
tors TIll of the Lie algebra of the (universal covering 
group of) de Sitter group 0(3,2) on the "Lorentz 
basis." By "Lorentz basis" we mean a basis in which 
the Casimir operators of the homogeneous Lorentz 
group are diagonal. It is felt that, apart from its 
intrinsic mathematical interest, a knowledge of these 
matrix elements may be useful in possible physical 
applications! involving the de Sitter group 0(3,2). 

The representation of translationlike generators 
on the "Lorentz basis," in general, does not corre­
spond to unitary representations. If one starts with a 
pure state corresponding to an eigenvalue A (real for 
principal series representation) of the Casimir opera­
tors of homogeneous Lorentz group, the action of 
the "translationlike" generators results formally in 
states with (A ± i). The corresponding matrix elements 
are not Hermitic. This situation is a special example of 
a more general malaise, which appears in the reduction 
of the representation of a noncompact group with 
respect to its noncompact subgroups.2 The corre­
sponding problem for the Poincare group on "Lorentz 
basis" has been discussed recently by Chakrabarti 
et al.3 (Indeed, a perusal of this paper prompted us to 
the present work.) 

Somewhat remarkably, it turns out that a class of 
Hermitian representations of the de Sitter algebra 
exists even on the "Lorentz basis." This happens 
when either (i) A is restricted to some suitable fixed 
value or (ii) is allowed to take up only two values 
A = il2 and A = -i12 (together with other restric­
tions !). These representations are discussed in Sec. 4. 

2. MATRIX ELEMENTS OF "TRANSLATION­
LIKE" OPERATORS ON THE LORENTZ 

BASIS 

The Lie algebra of the de Sitter group 0(3, 2) is 
generated by 10 operators M/lv and TI/l having the 
following commutation relations: 

[M/lv, M",,] = i(gv;.M/lG - g/l;.MvG 

+ g/lGMv;' - gVf1M/l;')' (2.1) 

[M/lv, TI;.] = i(gv;.TI/l - g/l;.TI v), (2.2) 

[TI/l' TI.] = -iM/lv' (2.3) 

The operators M/lv (= - MV/l) generate the Lie 
algebra of homogeneous Lorentz group (HLG) and 
we call TI/l "translationlike" as the latter go over to 
the translation operators of Poincare group upon 
contraction.4 We propose to determine explicitly the 
matrix elements of TI/l with respect to the canonical 
basis of HLG. The matrix elements of the generators 
of HLG are given bYS 

1 ( . T )(. T 1)( ·2 .2)( ·2 + A2) ! 
(N ± iN) I·m). = ± - J m J m - J - Jo J ) I' _ 1 m 1). 

1 2 J 10;' j (2j + 1)(2j _ 1) J, ± 10;' 

(2.4) 

+ . A (U ± m + 1)(j =t= m »)! . 1 
Jo [j(j + 1)]2 IJ, m ± )io;' 

T 1 ([(j ± m + 1)(j ± m + 2)][(j + 1)2 - j~][(j + 1)2 + A2])! . 
j + 1 (2j + 1)(2j + 3) IJ + 1, m ± 1)10;" 

1009 
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The two Casimir operators of HLG are given by 

(M2 - N2) Um)JoA = (j~ - A2 - 1) Um)iOA' (2.5) 

(2.6) 

The unitary representations of HLG are classified as 

(1) jo = 0, 1,2, 3, .. " - 00 < A < oo} 
(2) jo = t, t, .. " - 00 < A < 00 

principal series, 

(3) jo = 0, - I < -iA < I supplementary series. 

(2.7) 

The normalization corresponding to the above matrix 
elements is 

iO'A·(j'm' I jm)iOA = 0ij'Omm·oioio·O(A - A'). (2.S) 

Let us now proceed to construct matrix elements of 
TI/l' Evidently it is sufficient to consider TIo, as the 
rest TI i , i = 1,2,3, can be written down from Eqs. 
(2.2) and (2.4) once TIo is known. The general form 
of TIo follows from Eq. (2.2) and has been derived 
before. 6 

TIo Um)iOA 

= clo-1.iO[U + jo)U - jo + 1)]! Um)io-U. 

+ c1°+1.iO[(j - jo)(j + jo + I)]! Um)io+l.A 

+ C;;;-i.A[(j - iA)U + iA + I)]! Um)io.H 

+ c;~i,)·[U + iA)(j - iA + I)]! Um)io.Hi' (2.9) 

It remains for us to determine the coefficients Cio±1.io 

and c1:u. For this purpose it is convenient to use two 
commutation relations which follow from Eqs. (2.2) 
and (2.3): 

[TIo, [TIo, M· N]] = M· N, (2.10) 

[TIo, [TIo' M2 - N2]] = 2(112 - N2). (2. II) 

The above two relations in conjunction with Eq. (2.9) 
yield the following recursion relations: 

A(cio-l.ioC~0.io-1 _ cio+l.ioc~o.jo+l) 

+ iJ' (CA-i.ACA.A-i - cHi,ACA.Hi) = ° (2.12) o 30 30 30 30 ' 

(j0 + l)c~o+l.ioc~o.jo+l - Uo - l)c~0-l.ioc~0.Jo-1 

+ (1 + iA)CA-i.AC1,A-i + (1 - iA)cHi.ACA.Hi = 1 
10 10 30 10 2' 

(2.13) 

jo[(jO + 1)2c~0+1.iocio.io+1 - (jo - 1)2cio-1' iodO'iO-1] 

+ iA[(1 + iA)2CA-i.ACA, ... -i - (1 - iA)2CH i.AcA,Hi] 30 30 30 30 

= M + jg - A2 - 1. (2.14) 

The parameter ~ occurring in Eq. (2.14) denotes the 
eigenvalue of the first Casimir operator C1 of de Sitter 
algebra, i.e., 

c1 Um)JoA,; = ~ Um)iOA;' 

C1 = -(tM/lvM/lV + TI/lTI/l). (2.15) 

To solve the above set of recursion reiations,we proceed 
as follows. First, combine Eqs. (2.12)-(2.14) to obtain 

[A
4 + A\2j~ + 2jo + 1) 

+ jgUg + 2jo + l)Mo+l. JoC{o.io+1 

- [A4 + A2(2jg - 2jo + 1) 

+ j~(j~ - 2jo + 1)]ci0-l,iocio,io-1 

= (M + j~ - l)jo· (2.16) 

Now let us put 

(2.17) 

so that Eq. (2.16) reduces to 

{3io+1 - {3io = jg + (M - 1)jo· (2.1S) 

To solve Eq. (2.IS),we notice that, in an irreducible 
representation of the de Sitter algebra, there must 
evidently exist a minimum value of jo. Let us caB this 
jOL' so that {3iOL = 0. Hence, we get from Eq. (2.1S) 

{3io+l = {3io+1 - {3ioL 
io 

= ! ({3ko+1 - (3ko) 
ko~ioL 

io io 

= ! kg + (t~ - 1) ! ko 
ko~ioL ko~ioL 

= tUoUo + 1) - jOLUoL - 1)] 

x [joUo + 1) + jOL(jOL - 1) + q - 2]. 

(2.19) 
From Eqs. (2.17) and (2.19) we obtain finally 

UoUO - 1) - jOLUoL - 1)][jo(jo - 1) + jOL(jOL - 1) + ~ - 2] 

4[A4 + A2(2j~ - 2jo + 1) + jg(jo - 1)2] 

j~(jo - 1)2 + (.; - 2)[joUo - 1) - jOLUoL - 1)] - j~LUoL - 1)2 

4Uo + iA)(jo - iA)(jo - iA - 1)Uo + iA - 1) 
(2.20) 
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The determination of the remaining coefficient d;i,,\ is now straightforward. We substitute Eq. (2,20) into 

Eq. (2.12) and solve the resulting recursion relation. We obtain 

J.-i,A J.,;'-i A\A - i)2 + (2 - ~)(A2 - iA + j~L - jOL) - j~L(jOL - 1)2 (2.21) 
C io C io = 4(j0 + i).)(jo _ i).)(jo - i). - 1)(jo + i). + 1) 

If we want no to be represented by a Hermitian matrix, then we must have cio-l,io = (cio,iO
-

1
)* and 

cA- i ,.! = (CA,'\-i)*. Therefore 
'0 '0 

(2.22) 

when <I> and X are phase functions to be fixed according to some convention and we have 

. l' (j~(jo - 1)2 + (~ - 2)[Ujo - 1) - jOLUOL - 1)] - j~LUOL - 1)2)! Ic'O- ,JOI - 1 , 
A - 2 (jo + iA)(jo - iA)(jo - iA - 1)(jo + iA - 1) 

(2.23) 

;'-i,A _ ~().2(). - i)2 + (2 - ;)[A(). - i) + jOL(jOL - 1)] - j~L(jOL - 1)2)~, 
Ic io I - 2 (jo + i).)(jo - i).)(jo - iA - 1)(j0 + iA + 1) 

(2.24) 

Equations (2.23) and (2.24) give the desired matrix 
elements of the operator TIo on the "Lorentz basis." 

Finally, let us state the connection between jOL and 
the second Casimir operator C2 of DeSitter algebra. 
By direct calculation we find 

c2 Um>io)'~ioL 
= jOLUoL - 1)UOLUOL - 1) + ~ - 2] Um)io;.gioL' 

(2.25) 
when 

C2 = Ws<WS< + d\ WI' = i€l'v,l.,rM
v),TI<1, 

d - 1 MJJ. VM),<1 
- g€JJ.v),<1 • (2.26) 

Thus we may rewrite Eqs. (2.23) and (2.24) as follows: 

IC{O-l.iol 

_ 1 ( jo(jo - 1)[Ujo - 1) + ; - 2] - rJ )i 
- 2 (jo + i).)(jo - i).)(jo - iA - 1)(jo + i). - 1) , 

(2.27) 
Ic~;;-i'),1 

( 
A(A - mA(A - i) + 2 - ~] - rJ )t 

= t Uo + i).)(jo - O.)(jo - iA - 1)(j0 + it. + 1) . 

(2.28) 

In the above, ~ and 'f} are, respectively, the eigenvalues 
of the Casimir operators CI[ -(tMs<vMS<v + TIs<DS<)] 
and c2( W/L WJJ. + d2) of the 3 + 2 de Sitter group. 

3. COMMENTS ON THE MATRIX ELEMENTS 

The matrix elements given by Eqs. (2.23) and (2.24) 
can be used to study irreducible representations of 
de Sitter algebra on the Lorentz basis. First, a brief 
remark on an interesting class of nonunitary repre­
sentations in which the operator Do is Hermitian (but 

not N). This happens when A = in, n being an integral 
(for jOL an integer) or half-integral (forjoL a half integer) 
number. The Dirac representation of de Sitter algebra 
provided by the 4 x 4 Hermitian gamma matrices is a 
special case of this type of representation. We do not 
discuss nonunitary representations any further and 
pass on to the physically interesting case of unitary 
representations. 

From the discussion of Sec. 2, it is quite clear that 
in general one does not get unitary representations of 
de Sitter group on the "Lorentz basis." To see this, it 
is sufficient to notice that the action of the generators 
'TIl' on a pure state belonging to the eigenvalue A (real 
or pure imaginary lying between -i and i for principal 
or supplementary series unitary representations of 
HLG) gives us formally the states corresponding to 
(t. ± i). These matrix elements are not Hermitic. This 
situation is not, of course, a special feature of the 
de Sitter algebra but exists, in general, in the reduction 
of the representations of any noncom pact group with 
respect to those of one of its noncom pact subgroups. 2 

In particular, the same problem occurs in the con­
struction of representations of Poincare group on the 
Lorentz basis. In the present case there seems to be 
two ways of constructing unitary representations. 
First is to use suitably "smeared" basis vectors and 
obtain unitary representations as a continuous 
superposition of nonunitary ones. (In the correspond­
ing case of Poincare group, this has been done for the 
special case Ps<PJJ. = 0 in Ref. 3.) However, this 
procedure amounts to carrying out a change of basis, 
from the "Lorentz basis" to that in which the maximal 
compact subgroup 0(3) x 0(2) is diagonal. In this 
case, the original motivation of constructing repre­
sentations on the "Lorentz basis" is completely lost 
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as one can directly reduce7 representations of de Sitter 
group 0(3,2) with respect to its maximal compact 
subgroup 0(3) X 0(2). Hence, we refrain from dis­
cussing this possibility any further, in spite of its 
intrinsic mathematical interest. 

A second possibility of constructing Hermitian 
representations of the de Sitter algebra is to impose 
additional restrictions on the parameters which occur 
in Eqs. (2.27) and (2.28). As we will see in the next 
section, it is possible to consistently impose such 
restrictions, and the resulting Hermitian representa­
tions of the de Sitter algebra 0(3,2) on the "Lorentz 
basis" have the property that (i) A can only acquire a 
single fixed value and (ii) A can acquire two fixed 
values, A = il2 and -iI2. For this reason we may call 
these "discrete Lorentz" representations. 

4. DISCRETE LORENTZ REPRESENTATIONS8 

From the discussion of Sec. 3, it is obvious that in 
order to get Hermitian representations of the algebra, 
it is necessary to forbid the appearance of "undesired" 
states, as a result of the action of ITo on the canonical 
basis vectors of HLG. Thus we must prevent two types 
of transitions: (a) A -+ A ± i if it leads to outside the 
interval -i to +i for supplementary series of HLG 
and (b) A -+ A ± i for the principal series representa­
tions of HLG. We now investigate these two cases 
separately. 

Case (a) 

Here we seek representations of the de Sitter algebra 
which contain only supplementary series representa­
tions of HLG. To get this, we notice that.for A ¥: 0, 
~ ¥: 2,joL = 0, and 1] = 0, Eq. (2.27) gives IC~·ll = 0. 
This means that for jOL = 0, the vector corresponding 
to io = 1 is not present in the representation. Con­
sequently, jo = 2, 3 are also absent, and io = ° is the 
only allowed value in this case. Equation (2.28) now 
reduces to 

, (J.(A - i) + 2 - ~)k 
Ic~-""I = t A(J. - i) " (4.1) 

Hence, we get the desired solution for ~ = t. In this 
case IcNi.iil = 0, ICO!i,-iil = 0, as they should be, and 
I coki.li I = 1. Thus this representation is characterized 
by ~ = t, 1] = 0, io = 0, and A takes up the two 
values -ii and ii. 

Case(b) 

Here we seek special values of A, with A real, for 
which A -+ A ± i transitions are forbidden. Let 1.0 be 
such a value. Hence, we must have 

C"O-i, .. O = ° C"o+i, .. o = 0, (4.2) 
30 ')0 

From Eqs. (4.2) and (2.28) we get a pair of equations 

Ao(2A~ + 2 - ~) = 0, A~(A~ + 1 - ~) - r; = 0. 

(4.3) 

Equation (4.3) admits of two classes of solutions: 

(1) 1.0 = 0, 1] = 0, (4.4) 

(2) 1.0 ¥: 0, A~ = H - 1, 1] = H'(1 - E). (4.5) 

The above relations can also be obtained directly 
(and more simply) if, from the very beginning, we seek 
a solution of the form 

no Um)io," 

= CiO-I,io[(j + jo)(j - jo + I)]! Um)jo-U 

+ io+1 io[( . . )( . + . + I)]! I' ) (4,6) c.. ' ) -)0))0 )m i~+1,'" 

Equations (4.6), (2.10), and (2.11) give the recursion 
relations 

A(ciO-I,locio,10-1 - Cio+I'ioC{o'io+l) = 0, (4.7) 

(jo + l)cio+I.i°c i o,io+1 - (jo - l)do-I,iocio,io-1 = i, 
(4.8) 

jo[(1 - jo)2ciO-I,ioC{o,io-1 - (1 + jO)2C~o+I.ioC~o,io+l] 
= 1 + }.2 - j~ - H. (4.9) 

Solving recursion relations (4,7)-(4.9), we get once 
again Eqs, (4.4) and (4.5). These are now used to 
classify unitary irreducible representations: 

(bl) Ao = 0, ~ = 2, r; = ° : 
Ic~o+l,j°l = i for all jo· 

io takes up all values io = 0, 1, 2, .... 
(b2) 

1.0 = 0, 1] = 0, ~ = 2 - jOL(jOL - 1), ~ ¥: 2: 

I
cio+I'ioi = 1(Jo(jo + 1) - jOL(jOL - I»)!. 
o 2 ioUo+l) 

Here iOL can take up any half-integral value (jOL = 
t, t, t, ... ) or any integral value ~ 2 (jOL = 2, 3,4, 
.. '). For each choice of iOL' the allowed values of io 
are jOL' iOL + 1, iOL + 2, . . . Each choice of 
iOL' together with the correspondingly determined 
value of ~, provides a unitary, irreducible repre­
sentation: 
(b3) 

1.0 ¥ 0, A~ = ~/2 - 1, r; =W2)(1 - ~/2), 

~ > 2, 1] ¥: 0: 

Ici~+1.iol = t for all io. 

Here every value of ~ > 2, together with correspond­
ing values of r;, provides a pair of representations, 
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depending on whether jo takes up all integral (jo = 
0, 1,2, ... ) or all half-integral (jo = t, t, -i, ... ) 
values. 

5. CONCLUDING REMARKS 

We gave an explicit construction of the Lie algebra 
generators of the universal covering group of the 
3 + 2 de Sitter group on the Lorentz basis. The 
representations thus obtained are not, in general, 
Hermitian. Imposing additional restrictions, we 
obtained a class of Hermitian representations on the 
Lorentz basis (the discrete Lorentz representations of 
Sec. 4). It should be emphasized that we did not 
obtain the complete system of Hermitian representa­
tions of the 3 + 2 de Sitter algebra. There exists 
additional Hermitian representations (however, not 
on the Lorentz basis) which cannot be derived by the 
procedure followed in this paper. Finally, no attempt 
has been made in this paper to determine if the 
"discrete Lorentz" representations of the 3 + 2 
de Sitter algebra are also global representations of the 
corresponding group. 
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intended to be an answer to a question raised by Jauch and Mackey regarding the existence of approxi­
mately dispersion-free states. 

INTRODUCTION 

All the hidden variables theorems that have 
appeared in the literature have the folIowing form: 
If a system admits "sufficiently many" states in which 
all observables are measured exactly, then it is 
"classical." 1-6 The concept of system varies from 
author to author, as weII as that of state; in most 
papers the term "sufficiently many" means that the 
states in this distinguished set determine in some 
specific (but not always the same) way all other 
states,2.3.5 but there are some exceptions; finally the 
term "classical system" is given various meanings, not 
all equivalent. In this work we shall present two 
versions of the hidden variables theorem (both in the 

"if and only if" form) under as weak conditions as 
possible, and we shall indicate the role of certain 
further assumptions made by other authors. Our 
second theorem is intended to give an answer to a 
question raised by Jauch and Mackey3 as to whether 
hidden variables can exist in systems for which the 
above-mentioned "sufficiently many" states are not 
exactly, but approximately, dispersion free. 

In the next section we shall define the various terms 
and state the axioms used; the reader will note that 
they are strictly weaker than all others related to the 
same basic ideas. We shall also try to defend our 
point of view by pointing out the physical relevance of 
each term and axiom. In the remaining sections we 
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depending on whether jo takes up all integral (jo = 
0, 1,2, ... ) or all half-integral (jo = t, t, -i, ... ) 
values. 

5. CONCLUDING REMARKS 

We gave an explicit construction of the Lie algebra 
generators of the universal covering group of the 
3 + 2 de Sitter group on the Lorentz basis. The 
representations thus obtained are not, in general, 
Hermitian. Imposing additional restrictions, we 
obtained a class of Hermitian representations on the 
Lorentz basis (the discrete Lorentz representations of 
Sec. 4). It should be emphasized that we did not 
obtain the complete system of Hermitian representa­
tions of the 3 + 2 de Sitter algebra. There exists 
additional Hermitian representations (however, not 
on the Lorentz basis) which cannot be derived by the 
procedure followed in this paper. Finally, no attempt 
has been made in this paper to determine if the 
"discrete Lorentz" representations of the 3 + 2 
de Sitter algebra are also global representations of the 
corresponding group. 
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second theorem is intended to give an answer to a 
question raised by Jauch and Mackey3 as to whether 
hidden variables can exist in systems for which the 
above-mentioned "sufficiently many" states are not 
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state and prove our results; the method of proof is 
analogous to that of Stone, and has already been used 
by Zierler and Schlessinger6 for similar purposes. 

1. DEFINITIONS AND AXIOMS 

We shall work with the concept of a system as 
introduced by Mackey.7 

Events 

This is the basic undefined concept. It is assumed 
that the set L of all events carries a partial order ~, 
which represents implication; to each event A there 
corresponds a unique event A', representing the 
negation of A in such a way that (A')' = A and 
A ~ B implies B' ~ A' for all A, BEL Infima A A B 
and suprema A V B relative to ~, representing 
conjunction and disjunction, are not assumed to exist 
universally. We shall also assume the existence of 
elements 0, IE C (impossible and certain event) such 
that ° ~ A ~ T, A A A' = 0, A V A' = I for all 
A E C, and 0' = I, I' = 0. We say that A and Bare 
disjoint (mutually exclusive) if A ~ B', which is the 
same as B ~ A'; write A 1- B. We shall assume that 
any finite or infinite sequence of pairwise disjoint 
events Ak (Ai 1- Ai for i T'= J) admits a supremum 
written as L Ak , or Al + A2 + ... + An for the finite 
case; this is an essential physical condition for the 
formation of observables which are defined later. Thus 
this operation L forms a basic part of the algebra of 
C, although not studied by all authors.6 The final 
assumption on C is this: If A ~ B, then A' A B 
exists and B = (A' A B) + A. 

We shall use the term orthomodular to describe such 
an algebraic system. 

States 

A state of the system is considered to assign to each 
event its probability of occurrence and is, in fact, 
considered to be uniquely determined by this map. 
Probabilities are required to be additive on disjoint 
events in order to conform to statistical interpre­
tations. Here, however, a distinction must be made, 
according to whether infinite sequences of events are 
allowed or not. Not all authors agree on this. We 
shall use the term state for maps m: C -+ interval [0, 1] 
such that meL Ak) = L m(Ak) for all (finite or infinite) 
sequences of pairwise disjoint events; a map for which 
this condition is satisfied only for finite sequences will 
be called a quasistate. In a sense quasistates occur in 
limiting situations; it is conceivable that as a system 
passes successively through a sequence of states 
m 1 , m2, ... , the probabilities mICA), m2(A), . .. con­
verge to a value q(A) for all events A; the map q will, 
in general, not be a state, but a quasistate. In Ref. 8 

we have shown that under a certain physically 
plausible condition the converse is also true, although 
instead of simple sequences more general convergence 
elements such as nets may be needed. We shall assume 
that the set of all states ofL isfull, i.e., that ifm(A) ~ 
m(B) for all m, then A ~ B. A convex combination of 
states L:l Aimi (where Ai ~ 0, L Ai = 1) is always a 
state corresponding to the statistical mixture of the mi' 
There exist, however, more general situations. We 
shall say that the state m is the '" mixture of the 
family (mx)xExif,for all A EC,m(A) = Sx mxCA) d",(x); 
here", is a probability measure on X, and each m", is 
assumed to be a quasi state. If each mx is a state, then 
any", mixture will be a state too, the converse being 
false in general. We shall say that a family (mX)XEX is 
generating if there exists a a-algebra X of sets in X 
such that every state m of the system is a '" mixture of 
this family for a suitable probability measure", on X. 

Observables 

An observable is defined as a map u from the Borel 
sets in the reals R to C such that U(0) = 0, u(R) = I, 
E s F implies u(E) ~ u(F) and Ei n E j = 0 implies 
u(Ei ) 1- u(Ej ) and u (U Ei ) = L u(EJ The interpre­
tation is that u(E) is the event of u having a value in 
the set E. For any Borel function f: R -+ R, the 
observablef(u) is the map u of-1 (composition). The 
observable u is bounded if u(E) = 0 for all E disjoint 
from some bounded interval. If m is a state of the 
system, then pm,u: E -+ m(u(E» is the probability 
distribution of u in this state. The expectation of u in 
the state m is S:::~ A dpm,uCA), which we shall write as 
m(u); this exists if u is bounded. Thus the dispersion 
of the values ofu in the state m is m(u2) - m(u)2. Now 
the events are in a one-to-one correspondence with the 
observables u for which u = u2 , and from the above 
we have that a state m is such that all observables are 
measured exactly in it jf and only if m assumes on 
C the two values ° and I; such a state is called 
dispersion free. The above procedures can, of course, 
be formally applied to quasistates, and the main 
difference will be that the "quasiprobability" distri­
butions obtained will be finitely additive. In case the 
quasistate q is the pointwise (or weak) limit of the 
states m i , the expectation of a bounded observable will 
be the limit of its expectations in the states mi ; such a 
quasistate which is also dispersion free appears to be 
the natural object to study in the absence of dispersion­
free states. 

Classical Systems 

Everybody agrees that this concept is somehow 
associated with a Boolean algebra; there are, however, 
some variations. It is generally accepted that one can 
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say that two events A and B are commuting (or 
simultaneous or compatible) if there exist pairwise 
disjoint elements A1, B1, and C such that A = A1 + C 
and B = B1 + C 5.7.9.10 (several equivalent conditions 
are known). The center e of L is then defined as the 
set of all events which commute with everything, and 
is a Boolean subalgebra of L in the sense that the 
Boolean operations of e are actually performed in L. 
The standard definition of a classical system is the 
condition e = L, so that L becomes a Boolean a 
algebra. Some authors go beyond this in requiring 
that L be a Boolean algebra of sets,5 and the require­
ment of atomicity is occasionally thrown in.3•5 In 
some cases5 the extra condition of completeness is 
required, which is certainly too much, both for 
physical and for mathematical reasons (for example, 
no countably additive measures can exist on the 
algebra of all subsets of certain sets, except the 
discrete ones, thus excluding from consideration many 
physically important cases). We wish to give a 
definition which will not force L to be a lattice, but 
which agrees with the standard one in case it is. A 
system will be classical if it is a subsystem of one for 
which L is a Boolean a-algebra; it is strictly classical 
if this L is a Boolean a-algebra of sets. We use the term 
subsystem here in the following sense: Let L1 and L2 
be the orthomodular sets of events associated with the 
two systems 81 and 82 ; we say that 81 is a subsystem 
of 82 if 1:.1 5; 1:.2, all operations (including ~) in L1 are 
restrictions of those in L2, and every state of 81 is the 
restriction of a state of 82, It is well known that, even 
for Boolean algebras, infinite suprema need not 
coincide whenever finite suprema do so and that, even 
if they do, the third condition need not hold. This 
third condition has the extremely important interpre­
tation that in order to study some observables only, 
one need not consider the whole system-which is 
what is actually done in practice. 

It should, perhaps, be pointed out that physically a 
system behaves classically if all the observables are 
simultaneously measurable with absolute accuracy (at 
least in a pure state). Thus one can view the hidden 
variables theorem as the link between the physically 
relevant conditions and the algebraic structure of L. 

2. THE STANDARD THEOREM 

Consider any generating family (m"'\"EX of states. 
To each A EO L there corresponds a function A on X 
which takes x into m",(A). 

Lemma: The map A is one to one; the order on Lis 
transformed to pointwise order on the range of A, A' 

is transformed into 1 - A, and disjoint suprema in I:. 
are transformed into pointwise sums. 

Proo!, If A :::;; B, then meA) :::;; m(B) for all states m, 
so that in particular m",(A) :::;; m",(B) for x EO X, i.e., 
A(x) :::;; B(x). Conversely, if this last relation holds, 
we integrate to obtain meA) :::;; m(B) for all m, so that 
A :::;; B. Trivially A'(X) = m,,(A') = 1 - m,,,(A) = 

(1 - A)(x). Now, if A = zA;withAipairwisedisjoint, 
then m",(A) = Z mx(Aj), or A(x) = Z Ai(X), and the 
converse follows again by integration which is term­
wise permitted since all functions are nonnegative. 

Now Suppo:ie that each m", is dispersion free, so that 
m,,(A) is either 0 or 1 for all A EO L. Then A is the 
characteristic function of some set A EO X, and by the 
lemma we have that the map - sends L onto a col­
lection of subsets of X so that the operations are 
transformed into set-theoretic ones. Finally, by 
hypothesis, each state m gives rise to a measure fl on 
X so that meA) = fleA). So we have proved 

Theorem 1: If L admits a generating family of 
dispersion-free states, then L is strictly classical. 

So far we have ignored any lattice operations that 
may exist in L. Does the above isomorphism preserve 
such an extra structure? The necessary and sufficient 
condition is this: 

(J-P-Z) For any state m, the relations meA) = 

m(B) = 1 imply m (A 1\ B) = 1 [or, equivalently, 
meA) = m(B) = 0 imply m (A V B) = 0 in case both 
A 1\ B, A V B exist]. 

This is included as an axiom (all A, B EO L) in the 
system which was studied by Jauch and Piron,2 but 
had already been studied by ZierIerY 

Theorem 2: Under the hypotheses of Theorem I, the 
necessary and sufficient condition for the isomorphism 
to preserve an existing infimum (or supremum) is the 
J-P-Z condition for this particular pair. 

Proo!, Let C = A 1\ B; we anyway have C(x):::;; 
A(x) , C(x) :::;; B(x) for all x EO X, so that C 5; A n E. 
lf J-P-Z holds, then for x EO A n E we have A(x) = 
B(x) = 1, or m",(A) = mx(B) = 1, so that m",( C) = 1, 
i.e., x EO C. Conversely, suppose that C = An E, so 
that C(x) = A(x)B(x). If meA) = m(B) = 1, then 
A(x) = H(x) = 1 a.e. relative to the measure f.t 
corresponding to m; since A, jj :::;; I, we obtain C(x) = 
I a.e. relative to fl, and so m( C) = fl( C) = 1. A 
similar argument works for A V B. 

In connection with the preservation of the lattice 
operations under an order and complement preserv­
ing map of L in a Boolean algebra $, we note that 
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Zierler and Schlessinger6 have proved that if all 
existing suprema are preserved, then A V B exists in 
r iff A and B commute; in such a case, condition 
J-P-Z follows easily. Here we have proved more, 
since our condition involves only the preservation of 
suprema for the two involved elements. Naturally, 
our hypotheses are stronger. 

The converse to Theorem I is valid and its proof 
trivial; so we omit it. 

Theorem 3: If a system is strictly classical, then it 
admits a generating system of dispersion-free states. 

It is clear that the states in question are just the 
evaluation maps associated with the points of the 
space X. 

3. THE GENERALIZED THEOREM 

We shall now investigate the case where no disper­
sion-free states are known a priori to exist, only 
approximately such. As already mentioned, the proper 
objects to use in such a case are the dispersion-free 
quasistates. In the next section we shall defend this 
point. 

Now assume that (m",)a;E'x is a generating system of 
quasistates, and let X be the a-ideal of X consisting of 
those sets on which all measures associated with the 
states vanish. We define the map A as before, and note 
that the first two statements in the lemma are still 
valid, as well as their proofs. The third statement will 
change. Let A = I Ai' so that we have meA) = 
I m(Ai) for all states; since each ma; is only finitely 
additive, we have I Ai(x) 5: A(x); but fx (A(x) -
I Ai(x») dp,(x) = 0 for all p" together with this 
inequality, implies that A = I Ai modulo X. So we 
obtain: 

Lemma: Let A* be the class of A modulo X; then * 
maps ~ isomorphically into the space of classes of 
bounded measurable (relative to X) functions modulo 
X. 

Ifwe further assume that each ma; is dispersion free, 
so that the A are characteristic functions of sets in X, 
we see that the above isomorphism sends r into the 
Boolean a-algebra $ = X/X. Clearly all algebraic 
operations are transformed by the lemma to operations 
in $, and, since all measures which correspond to 
states vanish on X, they produce measures on $ so 
that meA) = p,{A*). We have proved 

Theorem 4: If the system admits a generating family 
of dispersion-free quasistates, then it is classical. 

Again the preservation of arbitrary lattice operations 
must be discussed. 

Theorem 5: Under the hypotheses of Theorem 4, the 
necessary and sufficient condition for the isomorphism 
to preserve an existing infimum (or supremum) is the 
J-P-Z condition for this particular pair. 

Proof" First note that the second part of the proof 
is valid in this case, so that we consider the first part, 
letting C = A A B. Again we have C S; An iJ = 
{x I A(x}B(x) = I}, and all we need is A n iJ - C to 
be in X. But for any probability measure p, on X the 
map 

m:L -+ _1 _ 1 L(x) dp,(x) 
p,(A n B) AnB 

is a state of the system. Since A and fj are 1 on A n iJ, 
we have meA) = m(B) = I, so that m{C) = I also. 
But C vanishes outside A n iJ, and thus 

p,(C) = JC(x) dp,(x) = f_ C(x) dp,(x) = p, (A n iJ). 
JAn}} 

Therefore, p, (A n fj - C) = 0 for all p,. 

Finally we prove the converse to Theorem 4. 

Theorem 6: Any classical system admits a generating 
family of dispersion-free quasistates. 

Proof' Consider the locally convex space of all 
bounded real-valued finitely additive measures on the 
given Boolean a-algebra 53 (we impose the weak 
topology). The probability measures on $ form a 
convex set with compact closure, which consists of 
quasistates of $. Let X be the set of extreme points in 
this compact set; since 53 is a Boolean algebra, the 
elements of X assume values 0 and I only, i.e., are 
dispersion-free quasistates of $. Therefore, for each 
x E X the functional ma; = x I r is a dispersion-free 
quasistate of r. Now by the Choquet-Bishop-de 
Leeuw theorem12 any probability measure p on $ will 
have the form 

peA) = Ix x(A) dp,(x) 

for a suitable probability measure f.t on X, and, since 
every state ofC extends to some such p by our hypoth­
esis, we have the desired generating family. 

Corollary: A system is classical if and only if all 
pure quasi states are dispersion free. 

4. REMARKS 

In this section we shall make more precise our 
previous vague remarks on the relation between 
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approximately dispersion-free states and dispersion­
free quasistates. 

Theorem 7: Let mk , k = 1,2, ... , be states such 
that for each A E I: we have 

lim [miA) - miA)2J = 0. 

Then there exists a dispersion-free quasistate. 

Proof" On the set N of natural numbers we consider 
an ultrafilter :F finer than the Frechet filter, following 
an idea due to Dieudonne. Consider the space T of 
all maps L ---+ [0, 1] which is compact for the pointwise 
convergence and the map A sending each kEN to the 
function k: A ---+ mk(A) in T. The image of :F under 
this map will converge to a limit q. Since each mk is 
finitely additive, so is q; i.e., we have obtained a 
quasistate of 1:. On the other hand, q(A) - q(A)2 is the 
limit of mk(A) - mk(A)2 along:F; but this is the same 
as its limit over the Frechet filter, which is 0 by 
hypothesis. Thus the values of q are 0 and 1 only, so 
that q is dispersion free. 

By following this line of thought we arrive at a 
result showing how a generating family of disper­
sion-free quasistates can be obtained from an 
"approximately generating" and "approximately 
dispersion-free" family of states. 

Theorem 8: Suppose that a family (mk,,,,)iCEX, k = 
1, 2, ... , of states is given such that for each x E X 
and each A E L the dispersion of A in mk,x tends to 
zero. Suppose that there exists in X a a-algebra of sets 
X and that with each state m of the system a prob­
ability measure f1 on X is associated, so that the 
integrals Sx mk,iA) df1(x) = mk(A) exist uniformly in 
k and converge to meA) as k ---+ 00. Then there exists 
a generating family of dispersion-free quasi states. 

Proof" We consider the ultrafilter :F as in the proof 
of Theorem 7, so that 

lim mk iA) = mxCA) 
:F • 

exists for each x E X and A E L; we have that mx is a 
dispersion-free quasistate. Thus we have Imk.",(A) -
m.,(A) I < € provided that k E some U'" E:F (A is 
fixed). Given any aI' a2 , ••• , an ~ 0 with ~ at = 
1 and Xl, X 2 , ••• 'Xn E X, we shall then have 

I i~ aim"'i(A) - i~ aimk .• :;CA) I < € 

n 

forall kEnUx;' 
;=1 

On the other hand, by the uniform integrability of 
the functions x ---+ mk.",(A), there exists a partition 
Xl, ... , Xr E X such that, for any other finer partition 

E1 , ••• , En of X and any choice of Xi E Ei , we shall 
have 

ImiA) - i~f1(Ei)mk.",;CA)1 < € 

for all k = 1, 2, .... 
We also have Im(A) - mk(A)1 < € for k > k(€). It 
follows that if k E n~l Ux and Xi E Ei , we then have . 

I i~f1(Ei)m",lA) - i~/(Ei)mk.",lA) 1< €; 
n 

but n U"'iE:F, 
i=l 

which is finer than the Frechet filter and hence contains 
a k> k(€). Therefore, we have for any Xi E Ei the 
relation 

Im(A) - i~f1(Ei)m"'i(A)1 < 2€, 

provided that the partition (Ei) is finer than the 
partition (Xj ). This means that 

meA) = Ix mxCA) df1(X). 

As a concluding remark, we shall compare the whole 
situation to what occurs within the totally different 
axiomatic scheme proposed by SegalP In this context 
a classical system is represented in a natural way by a 
commutative (associative) Banach *-algebra consisting 
of the observables. Segal has provedl4 the hidden 
variables theorem in the following form: If the (pure) 
states of the system in which all observables are 
measured exactly (have zero dispersion) separates the 
observables, then the system is classical. Note that a 
state in this context is identified with the expectation 
functional on the observables. Although the hypothesis 
here appears to be much weaker, it is not hard to see 
that it is actually equivalent to ours. It would be 
interesting to investigate this equivalence in the 
system we have been studying. 
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The representation of the electrostatic interaction by unit operators makes it possible to derive a general 
equation which provides many identities. The Rajnak-Wybourne identity is obtained as a special case. 
Some interesting examples are considered. The application of the identities to the construction of the 
electrostatic energy matrices by computer is discussed. 

I. DERIVATION OF THE GENERALIZED where 
IDENTITY 

The electrostatic interaction between the electrons 
in the "central field approximation" can be decom­
posed in the following way: 

~ e2jrii = e
2 ~ ~ Xk(naZanb1b' n~l~n~l~) 

i<i 1('. nalanblbna'la'nb'lb' 

X ~Z~kJ(nala, n~l~)' Z~kJ(nblb' n;l~). (1) 
i< i 

The quantities Xk(nalanblb' n~l~n~l~) and the operators 
Z:kJ(nl, n'l') are defined in Ref. 1 (see also the 
Appendix). Since 

and 

[Z:kJ(nl, n'l'), Z~kJ(n"l", n"'l"')] = 0 for i ¥= j, (2b) 

when combining terms in (1), the coefficient of 
Xk(na1anblb , n~l~n~l~) becomes 

[1 + b(na' nb)b(la' Ib)b(n~, n~)b(l~, 1~)]-1 

X S'\na1anb1b' n~l~n~l~), (3) 
where 

Sk(na1anb1b' n~l~n~l;) 

= ~ Z~kJ(nala' n~l~) . Z~kJ(nblb' n~l~). 
i* i 

In the "Racah-Slater method" one considers the 
quantities Xk(na1anb1b , n~l~n~l~) as parameters which 
multiply the matrices of the operators (3). 

The operators Sk(nufanb1b ,n~l~n~l~), which are essen­
tially two-particle operators, can be expressed by one­
particle operators in the usual way2: 

Sk( na1anb1b' n~l~n~l~) 

= I Z~kJ(nala, n~l~) . Z~kJ(nblb' n~l~) 
i*i 

= I Z~k)(nala, n~l~) . Z~kJ(nblb' n~l~) 
i, j 

- I Z~k)(nala, n~l~) . Z<j<)(nb1b, n~l~) 
i=j 

= Z(k)(nala , n~l~) . Zek)(nb1b' n~l~) 

- b(la' l~)b(nb' n~)b(lb' l~)[lar!Z(O)(nala, n~la)' (4) 

ZekJ(nl, n'l') = ~ Z!k)(nl, n'l'). 
i 

The term containing Z(O)(nala , n~la) is obtained by 
using equations (15.16) and (14.5) of Fano and 
Racah.3 (This reference is referred to as F.R. in the 
sequel.) 

Using (2b) again, one may also write 

in the form 

S,\ na1anb1b' n~l~n~l~) 
= ~ Z~k)(nblb' n~l~) . Z~kJ(nala' n~l~) 

i*i 

= Z(k)(nblbn~l~) . Z(k)(nala, n~l~) 

- O(lb' l~)o(na' n~)o(la, l~)[lb]-!Z(o'(nblb' n~lb)' (5) 

Equating expressions (4) and (5), one obtains the 
identity 

Z(k)(nala, n~l~) . Z(kJ(nblb, n~l~) 

- b(la, l~)o(nb' n~)b(lb' l~)[lar!Z(O)(nala, n~la) 
= Z(k)(nblb, n~l~) . Z(kJ(nala, n~l~) 

- o(lb' l~)b(na' n~)o(la' l;)[lbr!Z(O)(nblb, n~lb)' (6) 

Taking matrix elements of Eq. (6) between anti­
symmetrized states 'IjJ and 'IjJ' according to F.R. 
(15.16), one finally obtains the identity 

I (_l)J-r-k[Jrl( 'IjJ IIZ(k)(nala, n~l~)11 'IjJ") 
'1''' 

1 

- b(la, l~)b(nb' n~)o(lb' l~)[la' j]-i" 

X ('IjJ IIZeo)(nala, n~la)11 'IjJ') 

= ~ (_l)J-J" -k[J]-l( 'IjJ IIZ(k)(nblb, n~I~)11 'IjJ"') 
'I' 

X (tp'" IIZek)(nala , n~I~)II1p') 

- O(lb, l~)b(na' n~)b(la' l~)[lb' Jr! 

X ('IjJ II Zeo)(nblb, n~lb) II 1p'), (7) 

where J, JIf, and Jill are the total angular momenta of 
the states 1p, 1p", and 1plff, respectively. 

1018 
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Because of the particular definition of the oper­
ators Z(k), the summations over 'IjJ" and 'ljJ1II are each 
reduced to states of a single configuration, P" and pili 
respectively, which will be referred to in the following 
as intermediate configurations. 

Identity (7) is of a general form, which reduces 
to special cases by specifying the initial and final 
states and the interaction operators. The Rajnak­
Wybourne identity4.5 is obtained as one such special 
case. This, as well as some other interesting cases, is 
described in Sec. II. In Sec. III we discuss the use of 
Eg. (7) in the construction of the matrices of 
Sk(naianbIb' n~I~n~I~) by computer. 

II. EXAMPLES 

A. (nl)N - (nl)N-ln'I' Configuration Interaction­
The Rajnak-Wyboume Identity 

Limiting the states 'IjJ and 'IjJ' in (7) to the configura­
tions (nI)N and (nIt-1n'l' respectively, the intermedi­
ate configurations will be P" = (nI)N and fill = 
(nl)N-V 1', and Eg. (7) will be of the form 

2 (-ll-L"-k(L)-1 
(nl)N~"L" 

X [(nl)NexSL IIZ(k)(nl, nl)11 (nl)Nex"SI.:'] 

X «nl)Nex"SE' IIZ(k)(nl, n'l')11 (nl)N-\ex;S;I.:1)n'I'SL) 

- 15(/, 1')[1, L]-t 

X «nl)NexSL IIZ(O)(nl, n'l)11 (nl)N-\ex;S;I.:1)n'l'SL) 

2 (_1)L-U'-I[Lr1 
(nl)N-l~I" S," L," n' I' L" 

X «n1)NexSL IIZ(k)(nl, n'l')11 (nlyV-l(ex~S;I.:i)n'I'SE') 

X «nl)N-\ex~S;L~)n'l'SI.:' IIZ(k)(nl, n1)11 

X (n1)N-l(ex;S;L;)n'I'SL). (7') 

Using the relations 

«nl)NexSL IIZ(k\nl, n'l')11 (nl)N-\ex{S;I.:1)n'I'SI.:) 

= Nt( _1)L+Ll'+!'+k[L I.:]i{L I.: k} 
, I' I I.:] 

X (/NexSL I} IN- 1ex;S{LD 
and 

«nl)N-l(exlS1Ll)n'I'SL liZ(k)(nl, nl)ll 

X (nl)N-l(ex;S;I.:1)n'I'SE) 

= r5(SI' SD( _l)L'+Ll+!'+k[L, I.:]!{~1 ~1 n 
x «nl)N-lcx1S1L 1 IIZ(k)(nl, nl)11 (nl)N-lcx{S{L~) 

and summing over L", according to F.R. Eg. (1.2), 
(7') reduces to the Rajnak-Wybourne identity. 

B. (nl)4In'l' - (nl)4In" I" Exchange Interaction (I' '" I") 

Sometimes, the intermediate configuration on one 
side of Eq. (7) is much simpler than that on the other 

side. Its evaluation and the resulting expression are 
then also much simpler than those of the other side. 

As an example we take the exchange interaction 
between the configurations 1411' and /411",6 which is 
represented by the parameters Xk(ll', l" I). In this case 
identity (6) takes the form 

Z(k)(l, I") . Z(k)(l', I) = Z(k)(l', I) . Z(k)(l, I"). 

Both scalars Z(O) vanish here. 7 

The intermediate configuration on the left-hand 
side of (7) is P" = /41-11"1'. For this side one obtains 
specifically 

(l41(SILl)I'SL IZ(k)(/, 1"). Z(k)(l', 1)1/4!(S{I.:1)/"SL) 

2 (_l)L-L4-k[Lr l 

141-1(~2S2L2H" S3L3.Z' L4 
X (l41(SILl)/'SL Ilz(k)(/, 1")11 

X 14!-I(ex2S2L2)l"S3L3, I'SL4) 

X (/41-\ex2S2L2)/"S3L3' I'SL4 Ilz(k)(l', 1)11 
X 141(S{I.:l )/"SL), (8) 

which, after a long derivation, can be written as 

41 2 (_ll+Ll+L2+1+!'+SIH(Ll' L~, SI' S{)t 
Z41-1~2S2L2 

X (/41S1L1 I} 141-1ex2S2L2) 

X (/4!-1ex2S2L2 {I 14IS{I.:l ) 

X {S2 t SI} I" / k 
(

L L I') 
S 1. S' . 

2 1 I.:l L2 I 

(8') 

On the other hand, the intermediate configuration 
on the right-hand side of (7) is pilI = 14/+1 and the 
summation therefore reduces to the single term 2L 
with L = I. Thus this side becomes simply 

(l41(SILl)/'SL IZ(k)(I', I)' Z(k)(/, 1")114Z(S{I.:1)l"SL) 

= (-1)L[Lrl(l41(SILl)I'SL IIZ(k)(l', 1)II/41H 2/) 

X (/41- 1 2/1IZ(k)(/, 1")11 141(S{L;)/"SL), (9) 

which can be simply written a~ 

(-lY"+SI+S,'[SI, L l , S; , L~]! 

{
L I 

x I I' 
k }{L I k } (9') 

Ll I I" L~' 

by using Eg. (19) of Ref. 8. This is obviously much 
simpler than (8'), and its derivation much more 
straightforward. 

C. (nl)41Hn'l' - (nl)4IHn" I" Exchange Interaction­
Selection Rules 

In some cases, one has a closed shell as intermedi­
ate configuration on one of the sides of Eg. (7). This 
can then be used to obtain selection rules whose 
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derivation by conventional methods requires detailed 
calculation. As an example we take the exchange 
interaction between and within configurations con­
taining one hole and one electron. 

It is known that the exchange interaction within a 
configuration of the type (nl)41+1n'l', which is repre­
sented by the parameter Xk(nln'l', n'l' nl), is zero 
unless L = k and S = O. The same feature occurs 
also for the exchange part of the interaction between 
the configurations (nl)41Hn'l' and (nl)41Hn" l" (where 
[' =;t!: 1"), which is represented by the parameter 
Xk(nln'l', n" I"nl) , as was found by Goldschmidt.9 

These facts follow immediately from the right-hand 
side of (7), where the intermediate configuration 
becomes the closed shell 141+2. Specifically, one 
obtains' 

(l41-11'SL IZ(k)(l', I)' Z(k)(l, 1")1/41- 1/"SL) 

= (_1)L-k[Lr1(/41+1/'SL IIZ(k)(I', 1)11/41+2 1S) 

X (/4I+ 21S IIZ(k)(/, 1")11/41+1/"SL). 

Since the operators Z(k) are diagonal with respect 
to the total spin, one has S = O. In addition L = k, 
since L, k, and 0 should satisfy the triangular condi­
tion. 

One may also conclude that for the interactions 
between /41+11"'41"'+1[' - 14IHI"'41"'HI" and 14IH!'" l' -
14IHI"'I", Sk(l/',I"I) (Ref. 10) vanishes unless S = t, 
as was also pointed out by Goldschmidt.9 This last 
result is also obtainable by directly 'using the right­
hand side of Eq. (7). 

III. APPLICATION TO THE CONSTRUCTION 
OF THE MATRICES OF Sk BY COMPUTER 

The calculation of the matrix elements of the 
operators Sk is very tedious. It can only be efficiently 
performed with the aid of a computer. One of the 
central problems in using a computer for complicated 
problems is the reliability of the results. It is always 
difficult to be sure that a complicated and long 
program is entirely error free. In addition, the input 
data needed for the calculation (in our case, lists of 
terms and f.p. tables) might contain mistakes. Finally 
the computer itself might err. 

Since the matrices of the operators Sk are applied 
in many different calculations, it is essential to have 
methods for checking them before using them further. 
The conventional checking methodsll are based on 
the previous knowledge of the eigenvalues or the 
rank of certain combinations of the matrices, and are 
performed after the matrices have gone through 
arranging and organizing stages which bring them to 

an appropriate format for diagonalization. Therefore, 
when these checks give negative results, it is difficult 
to know how many mistakes have occurred, at what 
stage they have appeared, and to which definite 
matrix they correspond. 

On the other hand, identity (7) enables direct 
checking of individual matrices, in such a way that 
each matrix element is checked separately. Therefore, 
any mistake which occurs is detected at once and at 
an early stage of the construction process of the 
matrices. 

Since identity (7) is trivial when the intermediate 
configurations are equal to each other, it does not 
provide a check for the matrices of the parameters Fk 
within a configuration, nor for the matrices of inter­
action between configurations which differ from each 
other by individual quantum numbers of two equiv­
alent electrons. However, checks are provided in all 
other cases, which are generally more complicated. 

A computer program which makes use of identity 
(7) in calculating and checking both algebraic expres­
sions and numerical values of the matrix elements for 
electrostatic interactions between any two configura­
tions was written and is now available in the depart­
ment of theoretical physics of the Hebrew University 
of Jerusalem.12 Identity (7) has been found to be an 
extremely useful tool in all debugging stages of the 
program. 
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APPENDIX 

1. Definition of zlk) (nl, n'l'): Z:") (nl, n' /') is a tensor 
operator of degree k, operating on the ith electron, 
whose reduced matrix elements are 

(n"I" IIZ!k)(nl, n'l')11 n"'I"') = b(n"n)b(l"l)b(n"'n')b(l"'I'). 

As was pointed out by Judd,I3 Z(k)(nl, n'l') is actually 
proportional to coupled creation and destruction 
operators. Zlk )(ni, n'l'), operating on the left, destroys 
an nl electron and creates an n'l' electron. This 
property is often used. 

2. The parameter Xk(nalanblb' n~l~n~l~) is defined by 

Xk(na1unb1b' n~l~n~l~) 

= (la II C(k) II l~)(lb II C(k) II 1;)Rk(na1anb1b' n~l~n;l~), 

where Rk(na1anblb' n~l~n~l~) are the Slater integrals and 
C(k) are the spherical harmonics normalized according 
to Eq. (5.19) of Ref. 3. 
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The phase operators "cosine" and "sine" are characterized as a special and peculiar class of tridiagonal 
operators, defined on an abstract separable Hilbert space. The two disjoint sets of these operators, 
which lie on the unit sphere of the algebra of bounded operators, are convex and closed in the uniform 
topology. The whole treatment gives a new and systematic aspect to the quantum mechanical oscillator 
phase problem. 

I . INTRODUCTION 

The quantum mechanical phase problem has both 
practical and tutorial character: Practical, because 
of its applications to the laser physics, supercon­
ductivity, and superfluidity; tutorial, because it is 
related to the fundamentals of quantum mechanics. 

Quantum mechanically the phase problem begins 
with the definition of the phase operators C and S 
("cosine" and "sine"), which satisfy commutation 
rules analogous to the classical Poisson bracket 
relations 

{cos cp, H} = w sin cp, {sin cp, H} = -w cos cp, 

where 
H = (2m)-l[p2 + (mwq)2] 

is the harmonic oscillator and cp = arg (mwq + ip). 
In previous workl - 5 on this problem the following 

operators have been introduced: 
1 

C = 1(U + U*), S = - (U - U*). 
~ 2i 

The operator U is defined as 

U In) = a(n) In - 1), 

and satisfies the relation 

[U, N] = UN - NU = U, 

where N is the oscillator number operator, In), 
n = 0, 1, 2, ... , its normalized eigenstates, and a(n) 
a real suitablel sequence. 

Since there exists not only one but a class of phase 
operators which satisfy the commutation rules 

[C, N] = is, [S, N] = -iC, 

the problem was to choose phase operators C and S 
leading to reasonable physical results.2•3 Another 
problem is to study the general common properties 
of the phase operators. To this end we give in this 
paper an abstract formulation of the problem. The 
problem of characterizing the class of phase operators 
appears in the present formulation as a peculiar case 
of the perturbation problem of continuous spectra. 

The phase operators appear as a special and pecu­
liar class of tridiagonal operators of the first kind 
(and the angle-operators as a special class of tri­
diagonal operators of the second kind), i.e., the 
phase operators appear as a special and peculiar 
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where 
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operators have been introduced: 
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U In) = a(n) In - 1), 

and satisfies the relation 
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leading to reasonable physical results.2•3 Another 
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class of operators, the general properties of which 
were studied from a different point of view.6- s 

In the present paper we derive easily all the known 
results on the mathematical properties of phase 
operators. Moreover, we prove that the phase oper­
ators form two disjoint convex sets on the unit sphere 
of bounded operators, which are closed in the uniform 
topology. Finally some general properties of all the 
phase operators are obtained. 

n. THE UNILATERAL SHIFT AND 
WEIGHTED SHIFT OPERATOR 

Let Je be a separable Hilbert space with the ortho­
normal basis {en}!". The unilateral shift operator 
V: Yen = en+1 is an isometry from Je onto JeO{e1} 

and its adjoint V*: V*en = en_ 1 for n > 1 and 
V*e1 = 0, a partial isometry from JeO{e1} onto Je. 
The spectrum of V is the closed unit disk in the complex 
plane and it is purely continuous except for the points 
z: Izl < 1 which belong to the residual spectrum. Every 
point z in the interior of the unit disk is a proper 
value of V* with the corresponding normalized 
proper element 

fz = (1 -lzI2)!~zn-len' 

The points on the circumference belong to the con­
tinuous spectrum of V* and the residual spectrum 
is empty. 

On the other hand, the spectrum of the self-adjoint 
operator V + V* is purely continuous and it is 
confined to the closed interval [-2, 2].7 

The normalized elements fz E Je, not being proper 
values of V, have the property 

Vfz = Z-l[fz - (1 - IzI2)te1], 

which is convenient for the determination of the 
expectation values of V + V* in the states fz . 

If A is a diagonal operator Aen = a(n)en , n = 
1, 2, .. " then a left-weighted9 •10 unilateral shift 
is by definition the operator W = A V. It is easy to 
see that W is hyponormal, i.e., the relation WW* -
W* W ~ ° or WW* - W* W ~ ° holds, if and only 
if a(n) is monotone. For hyponormal operators it is 
well knownll that the spectral radius is equal to the 
norm. They also have many similar properties with 
the normal operators. 

The operators V, V*, W, and W* play an important 
role in operator theory. From a purely mathemat­
ical point of view, V is characterized9 as a universal 
operator. Many counterexamples, some of them 
very important,12·13 were constructed in the past with 
the help of the operators V and V*. For instance, 
V is an example of an isometry which is not unitary, 

and in the case a(n) = lIn, n = 1,2,3, ... , AVis an 
example of a compact operator for which the point 
spectrum is empty.14 

III. THE TRIDIAGONAL OPERATORS IN 
HILBERT SPACE 

Let a(n), ben), and den) be complex sequences. De­
fine the operators A, B, and D as follows: 

Aen = a(n)en , Ben = b(n)en , Den = d(n)en , 

n = 1,2,···. 

A tridiagonal operator of the first kind is an operator 
of the form 

T = AV + BV* + D. (1) 

In case A = B = I the operator (1) is called 
Schrodinger-type tridiagonal operator of the first 
kind. (The tridiagonal operators of the second kind 
are defined in a similar way if instead of the unilateral 
shift we use the bilateral one; see Appendix A.) 

The nature of the spectrum of self-adjoint 
Schrodinger-type tridiagonal operators of the first 
kind was studied in Ref. 6. The nature of the spectrum 
of tridiagonal operators of the first and the second 
kind in their general form, some typical examples, 
as well as the advantages of the approach to the 
study of difference equations were discussed in Ref. 8. 

For real sequences a(n), ben), and den) it is easy 
to see that operator (1) is self-adjoint if and only if 
a(n) = ben + 1). We shall see later that the oscillator 
phase operators C and S are a special case of 
bounded self-adjoint tridiagonal operators of the 
first kind. 

IV. THE FORM OF THE OPERATORS 
C AND S 

Definition: The oscillator number operator N IS 

defined as follows: 

N:Nen = (n - l)en , n = 1,2,···. 

Since Ne1 = 0, it is easy to see that 

NtVV*Nt = N, 

so that the well-known creation and annihilation oper­
ators a and a* are the following: 

a* = N~V, a = V*N~. 

In what follows we shall use the commutation relation 

V*N - NV* = V*. (2) 

Now we are able to find easily the form of the phase 
operators C and S from the requirement that they 
are bounded and satisfy the relations 

[C, N] = is, [S, N] = -iC. (3) 



                                                                                                                                    

ON QUANTUM MECHANICAL OSCILLATOR PHASE PROBLEM 1023 

Proposition 1: For bounded C and S the relations unitary operator 
(3) are satisfied if and only if there exists a bounded B:Ben = inen , n = 1,2,"', i2 = -1, 
operator U such that then 

[U,N]=U. 

Proof: For the sufficiency observe that 

[N, U*] = U* 

and 
[U + U*, N] = U - U*, 

[U - U*, N] = U + U*. 

Relations (3) follow by taking 

C = HU + U*), S = (1/2i)(U - U*). 

The necessity follows from (3) if we take 

U = C + is. 

Proposition 2: U is the adjoint of a unilateral 
weighted shift operator. Especially it is of the form 
U = V*A. 

Proof: Set VU = A. Due to V*V = I we then have 
U = V*A. Moreover, because of (2), 

V*(AN - NA) = O. (4) 

From (4) it follows that 

ANf - NAf= APf, (5) 

where P projects on the subspace, spanned by the 
element e1 . Relation (5) must be satisfied for every 
fE D(N), i.e., for every fin the definition domain of 
N. Thus for f = el it follows that A = O. Therefore, 

ANf = NAf, V fE D(N). (6) 

From (6) we easily derive that A is a diagonal operator, 
i.e., 

A:Aen=a(n)en , n=I,2,···. 

In case A = Iwe have U = V* and C = HV* + V), 
S = (1/2i)(V* - V). In the general case 

C=!(V*A+A*V), S=(lj2i)(V*A-A*V). (7) 

Thus, we have the following proposition. 

Proposition 3: The phase operators C and S are 
self-adjoint tridiagonal operators of the first kind. 

The set of phase operators must be characterized 
from the set of sequences a(n) for which the spectrum 
of C is the entire interval [-1, 1]. As far as the spec­
trum of S is concerned, it is easy to see that S is 
unitarily equivalent to C. In fact,' if we define the 

B-lSBen = (lj2i)B-l(V* A - A * V)e n 

= HV*A + A*V)en = Cen , 

and, for every f in Je, 
0') 00 

B-1SBj = 2: (B-1SBj, e,,)en = 2: (f, B-1SBen)en 
n~l n~l 

OCJ 

= 2:(f, Cen)en = Cj, i.e., B-1SB = C. 
n~l 

Thus, the operators C and S have exactly the same 
continuous and point spectrum. 

It is also well known! that, in the special class of the 
tridiagonal operators (7), the sequence a(n) can be 
taken, without restriction of the generality, as positive. 
We write 

C = HV*A + AV), (8) 

and we restrict ourselves to the study of the spectrum 
of the operator (8). 

The sequence a(n) because of the classical relation 
C2 + S2 = 1 is assumed to converge to unity.! This 
is due to the heuristic quantal rule: "Quantum 
results must go over into the corresponding classical 
ones in the limit of large quantum numbers." In 
Ref. I, it was assumed that a(n) ;:6 0 for n > 1 and 
also that it converges monotonically to unity. In the 
following we assume that a(n) is convergent. 

V. CHARACTERIZATION OF THE CLASS 
OF PHASE OPERATORS 

Assume that lim a(n) as n -->- 00 exists and require 
that the spectrum of C is the entire interval [-1, 1]. 

Theorem 1: If lim a(n) = rJ. as n -->- 00, then neces­
sarily rJ. = 1. 

Proof: Consider the two possible cases rJ. = 0 and 
rJ. ;:6 O. 

1 sf case (rJ. = 0): In this case A (and consequently C) 
is completely continuous. Therefore, the spectrum of 
C consists only of isolated proper values, i.e., the 
spectrum of C does not cover the interval [-1, 1]. 

2nd case (rJ. ;:6 0): In this case the operator C can be 
written 

C = (rJ./2)(V + V*) + H(A - rJ.1)V + V*(A - rJ.1)], 

(9) 
where the operator 

H(A - rJ.1)V + V*(A - rJ.!)] 

is completely continuous and self-adjoint and the 
purely continuous spectrum of the operator 
rJ./2( V + V*) is the entire interval [- rJ., rJ.]. 
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If IX > 1, then it follows from (9) due to the Weyl's 
theorem9.15 that the spectrum of C is always extended 
beyond the interval [ -1, 1]. If IX < 1, then the 
spectrum of C covers a part of the interval [-1, 1], 
and the residual part may belong to the resolvent 
set of C or may contain isolated proper values of C. 
In any case, the spectrum of C does not cover the 
interval [-1, 1]. Thus IX = l. 

Theorem 2: If lim a(n) = 1 as n -+ 00, then a 
necessary and sufficient condition in order that the 
spectrum of C is the entire interval [-1, 1] is 

IICII = l. 

Proof: Write the operator C as follows: 

C = HV* + V) + R, 
where 

R = H(A - J)V + V*(A - 1)] 

is completely continuous and self-adjoint. 

(10) 

The theorem is a simple consequence of Weyl's 
theorem because the purely continuous spectrum of 
HV* + V) is the entire interval [-1,1]. 

Corollary: If a(n) ~ 1 and lim a(n) = 1 as n -+ 00, 

then the spectrum of C is the entire interval [-1, 1]. 

Proof Since a(n) ~ 1 and lim a(n) = 1 as n -+ 00, 

it follows that IIA II = sup a(n) = l. Consequently, 
IICII ~ 1. This means 

sp (C) = spectrum ofC s:: [-1,1]. (11) 

But from (10) it follows 

[ -1, 1] s:: sp (C). (12) 

Relations (11) and (12) complete the proof. 

We now ask the question: Is the case in which C 
has a pure point spectrum dense in [-1, 1], as the 
Weyl-von Neumann theorem6.15 predicts, possible? 
This question is very reasonable because the class of 
operators of the form V* A + A V does not cover 
the class of self-adjoint Hilbert-Schmidt type opera­
tors. The fact that A - I [and consequently 
(A - I)V + V*(A - 1)] is an operator of trace class 
is sufficient to excludel5 the above case. The exclusion 
in the general case seems to be difficult with the meth­
ods of perturbation theory.6.15 

Remark: In order to prove that the spectrum of all 
phase operators is purely continuous, it is sufficient 
to prove that the operator A V + V* A has not proper 
values in the interval [-2, 2]. Suppose that there exists 

an f in Je such that 

(V* A + AV)f = Ef, lEI ~ 2. (13) 

The realization of Eq. (13) in the Hilbert space Ill, (0) 
leads to the difference equation 

a(n + l)f(n + 1) + a(n)f(n - 1) = Ef(n). (14) 

Since lim a(n) = 1 as n -+ 00, question arises if the 
solutions ofEq. (14) behave for large n as the solutions 
of the equation 

fen + 1) + fen - 1) = Ef(n), (15) 

which are oscillatory for lEI < 2 and of the form 
fen) = cln + Cz for E = 2, i.e., in any case they do 
not belong in 'z(1, CX» (see Appendix B). 

The corollary of Theorem 2 says that every sequence 
a(n) convergent to unity from below defines a phase 
operator C. Note that every sequence convergent to 
unity from above does not define a phase operator. 
In fact, from the relation 

Cen = Ha(n)en_ l + a(n + l)en+1] 

it follows that 

IICenli z = HaZ(n) + a2(n + 1)]. 

Thus, if a2(n) + a2(n + 1) > 4 for at least one n, 
then II CII > 1. 

Examples of phase operators constructed from 
sequences convergent from above to unity have been 
studied by various authors. I •2 The following theorem 
is very useful in connection to this problem. 

Theorem 3: The class of "cosine" ("sine") phase 
operators form a convex set. 

Proof We shall prove that if CI and C2 are phase 
operators and 0 ~ fl ~ 1, then 

(16) 

is also a phase operator. 
Obviously T is of the form (8). Since CI and C2 are 

phase operators due to Theorem 2 we have IICIII = 
IIC2 11 = l. Thus, from (16), it follows that 

IITII ~ 1. (17) 

On the other hand, T can be written as follows: 

T = l(v + V*) + R, (18) 
where 

R = t V* [fl(AI - J) + (1 - fl)(A2 - J)] 

+ Hfl(AI - 1) + (1 - fl)(A2 - 1)]V, 
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and Ai and A2 are the diagonal operators characteriz­
ing Ci and C2 , respectively. Since R is completely con­
tinuous and self-adjoint, it follows from (18) that 
the spectrum of Tcovers the interval [-1, 1]. Finally, 
from (17) it follows that the spectrum cannot extend 
beyond [-1,1]. 

Theorem 4: The convex sets of "cosine" and "sine" 
operators are closed in the uniform topology. 

Proof Consider a sequence of "cosine" operators, 

Cn = HV*A n + AnV), 

such that lim II Cn - CII = ° as n --+ 00. Since 
IICnl1 = 1, it follows that IICII ~ 1 + IICn - CII ~ 1 
and IIClI ~ 1 - IICn - CII ~ 1, i.e., 

IICII = 1. (19) 
But 

Cn = HV + V*) + HV*(An - 1) + (An - J)V], 

where An - J are completely continuous. Therefore, 
since the set of completely continuous operators is 
closed in the uniform topology, there exists a com­
pletely continuous operator A - J such that 

C = HV + V*) + HV*(A - 1) + (A - J)V], (20) 

where lim II Cn - CII = ° as n --+ 00. 

From (19) and (20) it follows that C is a "cosine" 
operator. This completes the proof that the set of 
"cosine" operators is closed. The same follows for 
the set of "sine" operators. 

VII. SOME GENERAL PROPERTIES OF THE 
PHASE OPERATORS 

Theorem 5: For every unbounded self-adjoint 
operator H with a complete system of proper ele­
ments and for every phase operator C, there exist 
normalizable states, which minimize the uncertainty 
product 

(21) 

Proof The normalizable states, which mimmIze 
the uncertainty product (21), are obtained3 •4 as 
proper elements of the following non-self-adjoint 
operator 

C + iyH, Y = real. (22) 

The operator (22) can be considered, without restric­
tion of the generality, as an operator with compact 
resolvent (see Ref. 8 or Appendix in Ref. 16). There­
fore, operator (22) has a discrete spectrum. Since the 
spectrum is not empty, it follows that there exists f 
in Je satisfying the proper value equation 

(C + iyH)f= Af 

Corollary: For every phase operator C, there exist 
normalizable states which minimize the uncertainty 
product (~C)2 . (~N)2. 

Theorem 6: There exist normalizable states for 
which the quantum results of any phase operator 
C (or S) are not distinguishable from the results of the 
phase operator 

i(V* + V) [or (1!2i)(V* - V)]. 

Proof All quantum mechanical physical informa­
tion for C are obtained from the expectation value 

(Cf,f) , fE Je, 
or 

(HV* + V)f,f) + (Rf,f) , 

where R is completely continuous and self-adjoint. 
Iffn (1lfn = I) is a sequence in Je convergent to null 
in the weak topology, then, since R is completely 
continuous, Rfn is a null sequence in the strong 
topology. Thus 

lim I(Rfn,fn)1 ~ lim II Rfnll = ° as n --+ 00. 

Therefore, there exists a k such that, for n ~ k, the 
expectation values of C and HV* + V) in the states 
fn are not distinguishable. 

APPENDIX A: THE ANGLE OPERATORS 

Let {en}!: be an orthonormal basis of an abstract 
separable Hilbert space Je. The bilateral shift Vo is 
defined as follows: 

Vo: Voen = en+!, n = 0, ±I,···. 

Vo is unitary with purely continuous spectrum the 
entire unit disk. Define the operator No as follows: 

No:Noen = nen, n = 0, ±I,···. 

The class of bounded operators Co and So which 
satisfy the relations 

[Co, No] = iSo, [So,No] = -iCo 

is the following special class of tridiagonal operators 
of the second kind: 

Co = HVri'A + AVo), So = (1/2i)(Vri'A - AVo), 

where 
(AI) 

A:Aen = a(n)en, n = 0, ±I,···. 

The operators (AI) are essentially the angle operators5 

in an abstract form. The results for the phase opera­
tors found hold also for the angle operators because 
they are obtained from general theorems of the 
perturbation theory. The difference consists of the 
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unitarity of the operator Vo. The consequen~es of this 
difference are well known.3 •5 

APPENDIX B 

Equation (14) is a second order difference equation 
of Poincare type. The theorem of Poincare and PerronI7 

as it is formulated and proved in the general form is 
not applicable in the present case because the roots 
of the characteristic equation of (15) have the same 
absolute value for lEI ~ 2. The assumption fen) E 

12(1,00) implies the existence of the limf(n + 1)If(n), 
which is the central point in the classical theory of 
Poincare and Perron; this, however, does not lead to 
contradictions. 

Assume that there exists fen) in 12(1, (0) such that 
Eq. (14) is satisfied. Since 

(Bl) 

it follows that limf(n) = 0 as n -+ 00 and because 
of (14) there exists a subsequence f(ni), i = 1,2, ... , 
such thatf(ni) ¥:- 0 and 

lim f(n i + 1) = 2 = A. 
ni-+OO fen;) 0 

(B2) 

Since lim a(n) = 1 as n -+ 00, we have from (14) that 

t. + l/A = E. (B3) 

JOURNAL OF MATHEMATICAL PHYSICS 

For E ¥:- 00 it follows from (B3) that A¥:-O and 
A ¥:- 00. 

From (B2) and (B3) it follows that for large n 
fen + I)If(n) behaves as fI(n + I)lfI(n), where fI(n) 
is a solution of Eq. (15), for lEI < 2. From this it does 
not follow that fen) ,,+eikn, k = real, and fen) __ 
cin + C2 for E = 2, or fen) ,......CI ( -l)nn + C2 for 
E = -2. It can, for instance, be fen) = (ljn)eikn, 
which does not contradict (BI). 

A rigorous proof that the spectrum of all the phase 
operators is purely continuous has not been achieved 
yet. 
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A rigorous method for obtaining the thermodynamic functions for a class of model Hamiltonians is 
examined near points where fluctuations in certain order parameters become large. It is shown that if a 
phase transition occurs at such a point in a model, then the transition is classical in nature. That is, the 
free energy is analytic in the relevant order parameter. 

I. INTRODUCTION 

The paucity of exactly soluble models for phase 
transitions has led workers in this field to consider 
various ways of obtaining approximate expressions 
for the thermodynamic behavior of model systems. l 

One such method involves taking the limit of infinite 
interaction range. For a wide class of local interac­
tions, this limit, if taken carefully, renders the models 

soluble and phase transitions can occur. 2 However, 
the detailed behavior of these models near the critical 
point has generally turned out to be identical to that 
of the "classical" theories of critical phenomena. l 

Rigorous proofs to this end were obtained by Lieb 3 

and Lebowitz and Penrose4 for systems with local 
interactions. In a previous paper5 (hereafter referred 
to as I), we also obtained this result for a class of 
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nonlocal models for liquid-vapor phase transitions 
in fermion syst~ms.6.7 

In this paper we wish to show that the results of I 
can be applied to a more general class of models. 
The models we shall be concerned with are all exactly 
soluble in the limit of an infinite system by the 
thermodynamically equivalent Hamiltonian (TEH) 
method.s We consider only phase transitions of the 
type which involve, below a certain thermodynamic 
point, long range ordering in a particular order 
parameter 'YJ associated with the model Hamiltonian. 
Furthermore, we assume that, at the critical point, 
fluctuations in 'YJ become macroscopically large. Under 
these assumptions we show that if a phase transition 
occurs in a given model in the class, then this transition 
is classical in nature. 

In the next section we describe the TEH approach, 
and Sec. III contains our application of the methods 
of I to the new class of models. We state our con­
clusions in Sec. IV. 

II. THE TEH METHOD 

In this section we outline the TEH approach, 
following Ref. 8. We consider a many-body system 
interacting according to the Hamiltonian 

k.O' 

+ V-I I Wa.a.(k, q)btabqa" (1) 
k.q 
a,a' 

The operators bta and bka are unspecified bilinear 
combinations of the single particle creation and 
destruction operators ak and at, and the subscript (] 
denotes the associated spin state. The quantities taCk) 
and t:(k) are the energies for single excitations, and 
Waa.(k, q) is the interaction between the excitations. 
The crucial factor in the analysis of Ref. 8 is the inverse 
volume (1{V) factor in the interaction term. It is this 
factor which, in the thermodynamic limit (V --7- 00, 

particle density held constant) gives the interaction 
an infinite range and allows the model partition 
function to be explicitly calculated. 

The TEH solution is obtained by introducing a 
set of variational parameters 'YJka' 'YJ~a into Eq. (1), 
rewriting the Hamiltonian in the form 

H = Ho + H', 

Ho = U + ! (Ga(k)bka + G:(k)bta)' (2) 
k.a 

H' = V-I ! Waa.(k, q)Bt.,.BQ"" , 
k.G a.a' 

where 

BkO' = bka - 'YJka , 

U = - V-I I Waa·(k, q)'YJ:.,.'f/Q.,.. , (3) 

Gik) = tik) + V-I I Waa·(k, q)'YJ:a" 
G.a' 

Now, in the thermodynamic limit, the "perturbation" 
H' does not contribute to the thermodynamical 
behavior of the model,8.9 providing one chooses the 
functions 'YJka to satisfy 

'I'l = {3-I _0_ [{3-Iln (Tr e-PHo)], (4) 
'/ka oGik) 

where {3 is the inverse of Boltzmann's constant times 
the temperature. The free energy of the model is then 
given by 

lim {3-1 In [Tr e-P(Ho+H'l] 
v .... 00 

= {3-I In [Tr e-PHO] == Fo. (5) 

For given bka , b~a' this trace can be evaluated using 
the Bogoliubov transformation method. The resulting 
expression, coupled with the variational equations 

_ oFo _ (b ) 
'YJka - oGik) - ka, 

(6) 

contains all the thermodynamic information about 
the given model. 

In the thermodynamic limit it is thus rigorously 
established that the model defined by Eq. (1) is 
equivalent to the system described by the nonlocal 
Hamiltonian Ho. At this point the similarity of the 
TEH method and the work of Girardeau,lo which 
formed the basis for the analysis of I, is evident. The 
fact that a phase transition can occur in a model of 
this type was demonstrated by Gartenhaus and 
Stranahan.6 

Finally, we note that according to Eq. (6), the 
Hamiltonian H' contains fluctuation terms in the 
parameters (bka ), and (bt.). We therefore expect that 
when these fluctuations become macroscopically \arge, 
TEH should lead to erroneous results. In the next 
section we verify this expectation by showing that Fo 
behaves analytically even near points of large fluctua­
tions. This analyticity is characteristic of the classical 
theories of critical phenomena. 

III. ANALYSIS OF THE TEH 

In this section we study the analytic behavior~f the 
TEH free energy Fo , Eq. (5), near points where 
fluctuations in the order parameter 

(7) 
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become anomalously large. The analysis parallels 
that used previously in I, so we shall merely indicate 
here the manner in which the methods ofI apply to the 
present case. 

As in I, we consider a class of interactions which 
may be written as a finite symmetric sum of factorable 
terms in the form 

N 

W"".(k, q) = L cxi(k, a){3;(q, a'). (8) 
i=1 

To accomplish our end, we first determine the condi­
tions under which fluctuations in 'fJ diverge. To 
facilitate our calculations, we include an "external 
field" term in the single-particle energy by writing 

taCk) == e,,(k) - E, 

t!(k) == e!(k) - E*. (9) 

The quantities E and E* are the fields conjugate to 'fJ 
and 'fJ* respectively, and are introduced here as a 
convenient manner by which to analyze fluctuations 
in these order parameters. Then we have 

-/...;J~ b \ - (OFo) 
'fJ - \7 (21Tl k.,,/ - OE / (10) 

where we have made use of Eqs. (2), (3), (5), and (6) 
and changed sums to integrals by the usual prescrip­
tion (in the limit V -* (0). A similar equation can be 
written for the conjugate parameter 'fJ*.H Further­
more, fluctuations in 'fJ are obtained from the formula 
(analogous to the equation for density fluctuations in 
a fluid used in I) 

(d'fJ)2 = (02~o) = (O'fJ). 
OE p OE P 

(11) 

Since 'fJ is a function of E through the functions Go(k), 
we have 

(
O'fJ) _ LJ~[~ oG,lk) + ~ OG!(k)] 
OE p - " (21T)3 oG,,(k) OE oG!(k) OE . 

(12) 

Therefore, assuming the integral over k always 
exists,12 a necessary condition for the onset of critical 
fluctuations in 'fJ is that, at some Pc, Ec , 

oG,,(k) oG:(k) 
---* 00 or -- -* 00. 

OE OE 

Now according to Eqs. (3) and (6), the functions 
G,,(k) and their conjugates obey the coupled nonlinear 
integral equations 

G,,(k) = taCk) + ~ J (::? W"",(k, q)[(J~;~q)} 

G:(k) = t!(k) + ~ f (::)3 W"",(k, q)[(J~~~q)l (13) 

It follows then that the derivatives of G,,(k) and G:(k) 
obey coupled linear integral equations of the form 

( OGi
k

)\ = -1 + L f dq dp W"".(k, q) 
OE }p a' ,a" (21T)6 

X {[ o2FO ]OGAP) 
oGa,,(p)oG!(q) OE 

[ 
o2Fo ]OG:,,(P)} + -- (14) 

oG:,{p)oG!(q) OE ' 

with an' > analogous formula for (oG:(k)/OE). We 
simplify these formulas by writing 

(
OG,lk)\ = -1 + ! J~ {K!~'{k, p) oGa,,(p) 

OE }p a" (277)3 OE 

+ Kaa,,(k, p) -- , 12 OG:,,(P)} 
OE 

(
OG!(k») = -1 + ! J dp 3 {K!~'{k, p) oGa,,(p) 
~ p ~ ~~ ~ 

+ K;!,,(k, p) OG~:(P)}, (15) 

where 

Kll (k ) - ...;J~ W (k){ (J
2F

O } 
au" ,p - -;: (21T)3 aa' ,q oGAq)oG:,{p) 

= K:!~(k, p), 

K12 (k ) - ...; J~ W (k q){ o2FO } 
a'" ,p - -;: (21T)3 a,,', oG:,,(p)oG!(q) 

= K:~~(k, p). (16) 

Upon substitution of the interaction defined in 
Eq. (8) into the above expressions, each of the 
kernels can be expressed in the form 

N 

K!~{k, p) = ! cxik, a)B~1(p, a'), i, j = 1, 2. (17) 
r=1 

As in I, B;1(p, a) is a function of {3 and E obtained by 
integrating in Eq. (16) over q. 

For kernels of this type the coupled integral equa­
tions reduce to a system of 2N linear algebraic 
equations. Following I,these equations can be solved 
by Cramer's rule, and the result is 

(JGa(k) 
-- = ! cxik, a)NlP, E)/D({3, E), 

OE r 

OG!(k)...; * / -- = k.. cxr(k, a)Nr ({3, E) D({3, E). 
OE r 

(18) 

The function D({3, E) is a 2N x 2N real determinant, 
the elements of which are functions of P and E given by 

D(P, E) = !5limj -! --3 ()(I(q, a)Bm(q, a). (19) f dq if 

I,mj " (21T) 
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The functions Nr(f3, fl) can be written as a linear 
combination of the minors of D(P, /1). Thus we 
obtain for the fluctuations, using Eq. (12), 

( 0'YJ) = M(P, E)/D(P, E). 
OE Ii 

(20) 

As the number of terms in the interaction is finite and 
all integrals are assumed to converge,12 we conclude 
that M({3, E) and D({3, E) are bounded in {3 and E. 
Therefore, if fluctuations in 'YJ are to diverge at a 
critical point, we must have at this point 

(21) 

We now examine the derivative of 'YJ with respect to 
temperature. By arguments identical to the above, 
and carried out in detail in I, we find 

(22) 

where P({3, E) is also expressible as a linear combina­
tion of the minors of the determinant D(P, E). 

In order to determine the analytic properties of the 
free energy Fo in 'YJ, we examine the derivatives of the 
denominator function D with respect to {3 and 'YJ, 
using relations analogous to those used in I~3 

(23) 

and 

(24) 

At this point we can apply the arguments of I 
directly to the present case. We write the numerators 
M({3, E), Eq. (20), and Pcp, E), Eq. (22), as sums of 
minors of D({3, E), and substitute into Eqs. (23) and 
(24). Then, as in I, all D-l({3, E) terms cancel and we 
conclude that the derivatives of D(P, E) are bounded 
at a critical point. Similar arguments apply to the 
higher - order derivatives, and so D [P, E(P, 'YJ)] == 
D({3, 'YJ) is analytic at a critical point. From this 
result, and the fact that M({3, E) must be bounded and 
nonzero at the critical point (see the Appendix of I), 
it follows that (OEj01])p is analytic in 1] and p. However, 

(25) 

so that (oFo!or;)pi(and therefore Fo itself) is analytic 
in 'YJ. Consequently, the TEH models are capable of 
producing only classical phase transitions. 

IV. CONCLUSIONS 

The results presented above, coupled with the 
results of I, indicate that the classical theory of phase 
transitions is inevitably obtained from the study of 
model Hamiltonians of the form of Eq. 0), when 
the limit of infinite interaction range is taken. In the 
present case, this limit was justified as a consequence 
of the ordinary thermodynamic limit, and the l/V 
term in the interaction. However, if the 1/ V is re­
placed by a general inverse range parameter y, and 
we take the limit as y ---+ 0 with the restriction 
y Ik,q,a,a' Waa,(k, q) is nonvanishing, then the TEH 
method is again applicable and the conclusions are 
unaltered. This fact provides a connection between 
our work and the work of Lebowitz and Penrose 4 

and Lieb.3 Basically, we have found that their result 
also applies to a wider class of nonlocal models. 
Thus we have confirmed, more generally than I, that 
the limit of infinite interaction range erases any non­
analytic critical-point behavior that might otherwise 
be predicted by a model. What is still lacking is a 
detailed understanding of how local, microscopic 
irregularities contribute in a macroscopic manner to 
thermodynamic behavior at the critical point. 

Finally, we note that by adding an infinite series of 
three-body and higher interactions to the model 
Hamiltonian, it is possible in the infinite range limit 
to obtain a nonclassical phase transition.14 

1 For a comprehensive review, see M. E. Fisher, Rept. Progr. 
Phys. 30, 615 (1967). 

• See, for example, M. Kac in Fundamental Problems in Statistical 
Mechanics, E. G. D. Cohen, Ed. (Interscience, N.Y., 1968). 

3 E. H. Lieb, J. Math. Phys. 7, 1016 (1966). 
4 J. Lebowitz and O. Penrose, J. Math. Phys. 7, 98 (1966). 
5 H. L. Scott, J. Math. Phys. 11, 3159 (1970). 
6 S. Gartenhaus and G. Stranahan, Phys. Rev. A138, 1346 (1966). 
7 S. Gartenhaus and G. Stranahan, Phys. Rev. 173, 260 (1968). 
8 G. Wentzel, Phys. Rev. 120, 1572 (1960). 
• N. N. Bogoliubov, D. B. Zubarev, and U. A. Tserkovnikov, 

Dokl. Akad. Nauk SSSR 117, 788 (1957) [Soviet Phys. Doklady 
2, 535 (1957)]. 

10 M. Girardeau, J. Math. Phys. 3, 131 (1962). 
11 In the following, we will consider only the order parameter rJ. 

The conclusions obtained also apply to rJ° if one replaces E by EO. 

12 This assumption holds rigorously for Fermi systems and is 
valid for Bose systems provided no single excitation state is macro­
scopically occupied. 

13 As pointed out in t, existence of derivatives of aU order is gener­
ally not sufficient to insure analyticity. We assume, however, that the 
additional requirement, which involves the nth Taylor coefficient 
approaching zero, is met. 

14 S. Gartenhaus and H. L. Scott, Phys. Rev. At, 1270 (1970). 
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The formal solution of the Eulerian-Lagrangian problem for sound propagation in continuous sto­
chastic media is reframed so that the emphasis on the need for complete knowledge of the statistical 
natur~ of the La&rangian fU,nctional o~ int~rest is shift~d to the need for knowled,ge of the asymptotic 
behavIOr of ccrtam stochastIc LagrangIan mtegrals which result from the applicatIon of a central limit 
theorem for stochastic functionals, The resultant practical relation for calculating the Eulerian ensemble 
expectation corresponding to the Lagrangian functional in question is shown to depend in a natural 
manner upon the Lagrangian path spreading and, in the case of a statistically isotropic medium, to reduce 
to the proper nonstochastic limit. 

INTRODUCTION 

In general, the stochastic Eulerian-Lagrangian prob­
lem involves obtaining the statistics of a Lagrangian 
functional u[X(t, ;), t] from the known statistics 
of an Eulerian field u(x, t), where X(t, ;) is the path 
as a function of the parameter t from the initial point 
; = XeD, ;). For example, u(x, t) could be the Euler­

derivatives, and the initial conditions and when {t(x) 
is statistically isotropic, since the emphasis on the 
need for complete knowledge of the statistics of 
{t[X(s, ;)] has been shifted to the need for knowledge 
of the asymptotic behavior of certain stochastic 
Lagrangian integrals which result from the applica­
tion of the central limit theorem for stochastic 

ian velocity field specified in laboratory coordinates Lagrangian functionals. 
at time t for a turbulent diffusion problem; see 
Lumley.l In the case of steady-state sound propaga­ I. FORMAL SOLUTION 

tion in continuous stochastic media, the complete, Letthe continuous Lagrangian functional F[X(s, ;)] 
rigorous stochastic Eulerian-Lagrangian problem be the value of a stochastic Lagrangian physical 
would involve finding the statistics of Lagrangian quantity, such as the sound pressure wave p[X(s, ;)] 
functions of the refractive index {t[X(s, ;)], where s of Ref. 2, at arc length s along the continuous path 
is the curvilinear distance (or arc length) traveled, X(s,;) from a point ; on the continuous initial 
from the known, or assumed, statistics of the Eulerian surface So (e.g., the face of a transducer) in the 
refractive field {t(x); see, for example, Eq. (39) of ensemble realization {tp. The quantity F[X(s, ;)] is 
Neubert.2 Unfortunately, this exact approach proves a function of s and of; and a functional of the field 
to be horrendous, if not impossible, if a sufficiently {tfl(x) and, hence, of the path Xes, ;) over /1-1l(x) as 
general class of physically meaningful functions determined by;, 00(;) and s. It is, of course, assumed 
{t[X(s, ;)] is to be considered; see Lumleyl and that all paths from a single point; have the same 
Monin and Yaglom3 (Sec. 9). Therefore, this study initial angle 00(;) for all {til in the total ensemble 
is confined to a more modest approach which in- {{tfl} and for all s in the interval [0, 00). In this paper, 
volves reframing the rigorous formal solution in a an initial surface So and a single terminal point x are 
form which is sufficient for, but not restricted to, considered. This analysis can be modified to include 
treating many steady-state sound propagation prob- a terminal surface S. Let F(x) be the corresponding 
lems of practical interest in continuous stochastic continuous Eulerian field at a known point x. The 
media, This new form for the solution proves to be ensemble expectation of a Lagrangian functional 
convenient for applying the central limit theorem F[X(s, ;)] over all {til of {/1-Il} for a given sand; will 
for Lagrangian stochastic functionals discussed in be represented by E{F[X(s, ;)]}, which will be called 
Sec. 3.15 of Lumley4 and in Sec. 4.5 of Neubert5 and the Lagrangian ensemble expectation of F[X(s, ;)]. 
the methods of asymptotic integral evaluation pre- The ensemble expectation of the corresponding 
sented in Sec. 9 of Monin and Yaglom3 and in Secs. Eulerian field F(x) over all /1-p of {{til} at the field point 
4.3 and 4.8 of Neubert.s It will be found that the x will be represented by (F(x», which will be called 
general stochastic Eulerian-Lagrangian problem will the Eulerian ensemble expectation of F(x). A different 
not have to be solved totally for many sound propaga- notation is used to distinguish the ensemble expecta­
tion problems when the equation for the path Xes, l;) tions of Lagrangian functionals from the ensemble 
can be expressed in terms of {t[X(s, ;)], including its expectations of Eulerian fields for the purpose of clarity 

1030 
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in the following development. It will become apparent 
that these two stochastic concepts are quite different 
in their behavior due to the Lagrangian spreading of 
the terminal location Xes, ;). Note that X = xes, ;) 
is the Lagrangian (path) position, while x is the 
Eulerian (space) position. 

The stochastic Eulerian-Lagrangian problem for 
steady-state sound propagation in continuous sto­
chastic media can now be stated as follows: Given the 
statistics of the Eulerian field !-'(x) and assuming the 
form of the Lagrangian functional F[X(s, ;)] of 
!-'[X(s, ;)] is known, determine (F(x». One senses 
that a Lagrangian ensemble expectation will have to 
enter into the formalism, but E{F[X(s, ;)]) is too 
indiscriminate since it contains more of {!-'p} than is 
wanted. Not all!-'p result in paths of length s from; 
that terminate "near" a desired point x, i.e., not all 
!-'p produce paths such that Xes, ;) ~ x, where the 
rigorous interpretation of "X(s, ;) ~ x" is x + dx > 
xes, ;) ~ x. In fact, as sand; vary over all their 
possible values, different subsets of {!-'p} contribute 
paths that satisfy Xes, ;) ""=i x. Thus, it is necessary to 
do the ensemble averaging only over those !-'p which 
result in Xes, 1;) ~ x for each possible sand 1;. This 
limited ensemble, called the Lagrangian subensemble, 
is represented mathematically by 

{!-'p}. == {!-'p I x + dx > Xes, 1;) ~ x} 

= {!-'p I xes, ;) ""=i x} C {!-'p}, 

(1) 

(2) 

and the conditional ensemble expectation of the 
Lagrangian functional F[X(s, ;)] over this limited 
ensemble, called the Lagrangian subensemble expec­
tation, is represented by 

£{F[X(s, ;)]} 

== E {F[X(s, 1;)] I x + dx ~ Xes, ;) ~ x} (3) 

= E {F[X(s, ;)] I xes, ;) ""=i x} (3') 

for notational simplicity. Thus, £{F[X(s, I;)]} gives the 
value of F[X(s, ;)] averaged over all paths of length s 
from I; that do reach x (there can be at most one such 
path for each realization !-'p)' Infinitely many possible 
paths may contribute at x for each sand ;. The next 
question is how many or, better, what percentage of 
the !-'p in {!-'p} contribute paths to £{F[X(s,;)]}? 
This latter quantity is just the measure M of {,up}., 
since the measure of {!-'p} is unity, and is given by 

M {!-'p I Xes, ;) ""=i x} 

[Eq. (5) reduces to Eq. (6) if the medium is statistically 
homogeneous], where B(x, ; I s) (if it exists) is the 
joint probability density for the events Xes, ;) ""=i x, 
Yes, ;) ""=i y, and 2(s, ;) R:J Z and will be called the 
Lagrangian measure function. 

Therefore, the Eulerian ensemble expectation of 
F(x), for a given pair of ; and s, is 

(F(x; I; Is» 

== (F(X) I x + dx > Xes, ;) ~ x) (7) 

= (F(X) I xes, ;) ""=i x) (7') 

= £{F[X(s, ;)]}M {!-'p I xes, 1;) ""=i x} (8) 

= £{F[X(s, I;)]}B(x, I; Is) dl; ds. (9) 

It is interesting to note that, although 

(F(X) I Xes, ;) ""=i x) 

is "quasi-Eulerian" in the sense that only a single 
known terminal point x is considered, its condition 
(that the ensemble averaging be done only over 
{flp}.) concerns a Lagrangian path selection process. 
This dual character also occurs in the equivalent 
representation given by Eq. (9) where B(x, I; I s) 
continually measures {!-'p}. as x, ;, and s vary, while 
£{F[X(s,l;)]} is purely Lagrangian but restricted to 
Xes, ;) ""=i x paths. Thus, the Eulerian ensemble 
expectation of F(x) , for a given s and for all I; E So, is 

(F(x; So Is» == (F(X) I X(s,;) ~ x and; E So) (10) 

= ds r d';B(x,; I s)£{F[X(s, I;)]} (11) Jso 

and follows by considering all ; E So in Eqs. (7') and 
(9), respectively. The statement that Eq. (10) equals 
Eq. (11) is a tautology in the sense that Eqs. (10) and 
(11) are two ways of saying the same thing. Equation 
(10) specifies formally the quantity that is desired, 
and Eq. (11) states how this quantity can be calculated 
in terms of the factors B(x, ; I s) and £{F[X(s, ;)]}, 
which are to be determined for each specific physical 
problem that is considered. Finally, the Eulerian 
ensemble expectation of F(x) for all ; E So and all 
possible s is 

(F(x» = (F(X) I Xes, ;) ""=i x, ; E So and s E [0, (0) 

(12) 

= rOOds r d;B(x,; I s)£{F[X(s,;)]} Jo Jso 
(13) 

= roodJ d;B(Xi - ~il s)£{F[X(s, ;)]}; Jo Jso 
(14) 

== M {!-'p I x + dx ~ xes, ~) ~ x} (4) Eq. (14) applies only when the medium is statistically 
homogeneous. Equations (12) and (13) follow by 

(5) considering all s E [0, (0) in Eqs. (10) and (11), 
(6) respectively. Note that in the integrand of Eq. (13) 

= B(x, ; I s) d; ds 

= B(x; - ~i I s)d;ds 
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both E{F[X(s,;)]} and B(x,; I s) are defined for 
the same Eulerian statistical and path assumptions; 
only the ensembles differ since B(x, ; I s) must permit 
any subensemble to be chosen while E{F[X(s, ;)]} 
must utilize only the particular subensemble {,up}s 
chosen. 

It should be emphasized that, in obtaining Eq. (13) 
for determining the Eulerian ensemble expectation 
(F(x» from the Lagrangian subensemble expectation 
E{F[X(s, ;)]}, two stochastic aspects of this Eulerian­
Lagrangian problem have been explicitly considered 
together: 

(i) the probability density B(x, ; I s) that, for a 
given sand ;, the path Xes, ;) terminates "near" the 
chosen (fixed) point x [i.e., that X(s,;) ~ x]; 
symbolically, this density can be denoted by B(A); 

(ii) the Lagrangian conditional (subensemble) ex­
pectation E{F[X(s, ;)]} of the Lagrangian functional 
F[X(s, ;)] given that the event X(s,;) ~ x has 
occurred; symbolically, this conditional expectation 
can be associated with the conditional density B(B I A). 

Thus, Eq. (13) can be expressed symbolically as 
follows: 

(F) = II dA dBF(A)B(A, B) 

= II dA dBF(A)B(B I A)B(A) 

= I dAB(A)E{F(A) I A} 

= I dAB(A)E{F(A)} , (13') 

where dA represents d; ds in Eq. (13). 

II. A CENTRAL LIMIT THEOREM FOR 
STOCHASTIC LAGRANGIAN FUNCTIONALS 

Section 3.15 of Lumley4 contains an extensive 
exposition on the existence of a central limit theorem 
for random functions and discusses several sufficient 
conditions for such a theorem. Unfortunately, the 
direct use of the several proofs that exist is not possible 
since the sufficient conditions which are imposed on 
the stochastic functionals under consideration cannot 
be verified for real processes (see Monin and Yaglom,3 
Sec. 9). For the purposes of this study, it will be 
assumed that the stochastic Lagrangian functionals 
ui(s) = ui[X(s, ;)], of continuous paths of interest, 
Xes, ;), governed by an isotropic random field ,u(x), 
satisfy a physically meaningful set of sufficient con­
ditions so that the integral f8 ds'u;(s') tends asymp­
totically to a Gaussian distribution. This theorem can 

be expressed in the useful tensor form 

E{exp (ik;fdS'UlS'»)} 

,...., exp ( - !kikjE{f ds' f ds"[ u;(s') - E{ u;(s')}] 

X [uls") - E{U;(S")}]}) 

x exp (ik;E{fdS'UlS')}). (15) 

This relation proves to be of considerable practical 
interest since it can frequently be employed to reduce 
the problem of finding both B(Xi - ;i I s) and 
E{F[X(s,;)]} to the problem of determining the 
asymptotic behavior of certain stochastic Lagrangian 
integrals (see Chap. V of Neubert5). For the purposes 
of this paper, it will be assumed that all the integrals 
exist in at least the sense of generalized functions 
(see, for example, Lumley4 or Gel'fand and Shilov6). 

It should be noted that the problem of choosing a 
useful set of sufficient conditions for this central 
limit theorem is intimately related to the problem of 
the existence of the integral scales which result from 
the asymptotic evaluation of the integrals in Eq. (15). 
From the material in Lumley,4 it appears likely that 
a sufficient condition for the validity of Eq. (15) can 
be devised by requiring that the integral scales con­
verge rapidly enough. 

III. A METHOD FOR DETERMINING 
B(Xi - ~i I s) 

The Lagrangian measure function B(Xi - ;i I s) 
[which is actually, in this paper, a probability density 
for the case of a continuous, statistically isotropic 
field ,u(x)] can be determined from its characteristic 
function (see Sec. 3 of Monin and Yaglom3 and Sec. 
2.5 of Lumley4), which in Cartesian coordinates is 
given by 

q;(x,; I s) == E{exp (ik;[Xls,;) - ;;])} (16) 

= E{exp (ik;fdS' d~; (s', ;»)} (16') 

,...., exp [ -!kik;fds'fdS"E{ (dd~i(S') - E{~~i(S')}) 

x (d~; (s") _ E{d~; (S")))}] 

X exp (ikjfdS'E{d~; (S'))) (17) 

= exp (-tkik;E{[XiCS, ;) - E{XiCs, ;)}] 
x [X;(s,;) - E{X;(s, ;)}]}) 
x exp [ik;E{Xls,;)}] (18) 

= exp [-!kik;Ui;(S,;) + ik;mls, ;)], (19) 
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where 
(19') 

and 

Ui; = Ui;(S, ;) 

== E{[Xi(S, ;) - E{X;(s, ;)}] 

X [X;(S,;) - E{X;(s, ;)}n (20) 

= i8ds'fdS"E{ (d:
i 
(S',;) _ E{d:i(S" ;)}) 

X e~i (S", ;) - E{d~i (S", ;)})}. (20') 

Here k i , k; = k 1 , k 2 , ks are dummy variables and 
only stochastic quantities, such as S~ ds'(dXilds)(s', ;), 
have pertinence in <p(k,; I s) since deterministic 
factors are cancelled out in Eq. (24). Note that the 
X;(s, ;) are permitted to take on all their possible 
values in Eq. (16) and later, in Eq. (24), B(Xi - ;; Is) 
picks the desired value for each. Therefore, the 
Lagrangian ensemble, rather than subensemble, 
expectation must be applied in Eq. (16) since 
B(x; - ~i I s) must be permitted to treat all possible 
values of X;(s, ;) in order to be capable of deter­
mining the measure per unit s per unit ; of the 
Lagrangian subensemble under consideration in Eq. 
(24) for each ;, s, x. When the stochastic Lagrangian 
integrals H ds' (dXilds) (s' , ;) go asymptotically to a 
Gaussian distribution, Eq. (15) renders Eq. (17). 
Since the components along the diagonal of the 
matrix [Uii] each represents an appropriate measure 
of the Lagrangian path spreading in its respective 
direction, [Uii] will be called the Lagrangian spread­
ing matrix. Thus, via Eq. (24), it is seen that the 
Lagrangian measure function B(Xi - ~i I s) is a 
direct consequence of the Lagrangian path spread­
ing. Equation (20') has a fluid mechanics analog in 
Richardson's "nearest neighbor diffusion" [compare 
Eq. (113) on p. 48 of Corrsin7 with Eq. (4.6-28) on 
p. 133 of Neubert5 (this was brought to the author's 
attention by J. L. Lumley)]; see also Eq. (9.27) of 
Monin and YaglomS and Eq. (7.1.3) of Tennekes and 
Lumley.s If at represents an appropriate measure of 
the inhomogeneity of the medium, such as the rms 
variation of ft(x) relative to its mean, then the nonsto­
chastic limit of Eq. (20) can be given by 

lim Ui; = O. (21) 
a"" 0 

The Lagrangian spreading matrix [Uii] can be 
expressed in terms of its principal axes by assuming 
the medium is statistically isotropic and choosing a 
suitable initial orientation for the paths. This reduces 

the determinant II Ui;1I to 

3 

IIUiil1 = TI Uii = UllU22U3S, 
i~1 

(22) 

and the components of the inverse matrix of CUi;] are 
then given by 

Uii-1 = l/Uii (23a) 
and 

Ui/ = 0 for i =;f:.j (23b) 

(no summation on i). Therefore, the Lagrangian 
measure function for a statistically isotropic medium 
can be written as 

B(Xi - ~i Is) 

= ~ foo dk<p(k, ; I s)e-ik;(xdj) 
(27T) -00 

exp [_iUijl(Xi - ~i - mi)(x; - ~j - m j )] 

= 
27T(27T II Ui;II)! 

_ TI3 exp [--l(Xi - ~i - mi)2/Uii] 
- . ! 

,=1 (27TUii) 

(24) 

(26) 

(27) 

Equation (25) arises from Eq. (19), and the trans­
formation to Eq. (26) follows when [Ui;] is a positive­
definite matrix. Equations (22)-(23b) permit Eq. (27). 

Goodman9 shows that inside an integral including 
(J = 0 (and under suitable conditions) 

(28) 

i.e., this limit behaves like a delta function. Thence, 

lim Y(Xi - ~i - mi Is) = O(Xi - ~i -lim mi)' (29) 
a~O «~o 

provided mi and Uii are well behaved for the integral 
in question, where 

I 
exp [-teXi - ~i - rni)2/Uii(S)] 

y( Xi - ~ i - mi S) == ---=---=--'------,;---'---"'-'--'-'-

[27TUn(S)]! 
(30) 

In short, 
3 

lim B(Xi - ~i I s) ,...., lim IT Y(Xi - ~i - rni I s) (27') 
a-+O (1-+0 i=l 

== lim y(x, ; I s) (31) 
a"" 0 

= o(x - ; - m Is). (29') 

For example, assume that the initial surface So is a 
rectangle of dimensions 2'YJo by 2'0 centered at ; = 0 
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with all initial paths perpendicular to So so that 

rn2 = rn2(s) = 0, 

rna = rna(s) = 0, 
and 

in a statistically isotropic medium. Let 

[~i] = [0, 1], '] 

and 
[Xi] = [x,y, z]. 

Then 

and Eq. (14) reduces to 

lim (F(x» 
" .... 0 

= {F(X, 1], n, -1]0 ~ 1] ~ 1]0, 

0, otherwise 

(32a) 

(32b) 

(32c) 

(33) 

(34) 

(35a) 

(35b) 

(36) 

which is the necessary nonstochastic limit. If 
F[X(s, ;)] is the Lagrangian pressure wave p[X(s, ;)] 
of Ref. 2, Eq. (36) renders 

lim (p(x» I'-.J Po(1], ,)eiko
,", (37) 

" .... 0 

which is the proper result for a uniform, nondissi­
pative medium. 

IV. CONCLUSION 

In Ref. 2, it was shown that the solution of the 
stochastic Helmholtz equation for continuous media 

(38) 

where ko is the free-space wavenumber, should be 
treated by a two-variable expansion (see Chap. 3 of 
ColelO). The resulting sound pressure wave p[X(s, ;)], 
Eq. (39) of Neubert,2 is intrinsically Lagrangian so 
that the determination of (p(x» from p[X(s, ;)] 
invokes the stochastic Eulerian-Lagrangian problem. 
Thus, Eq. (14) relates (p(x» and £{p[X(x, ;»)" via 
B(Xi - ~' I s), which is given by Eq. (27), for a 
statistically isotropic medium, in terms of the 
diagonalized Lagrangian spreading matrix [Ui;]. For 
the case of Fermat paths, 

d ( dX;) 
ft.i = ds ft --;J; , (39) 

so that [U;;] can be expressed explicitly in terms of 
ft[X(s, ;)] and the initial conditions on So. However, 
in order to make further progress with [Uii ]' and 
E{p[X(s, ;)]}, it is necessary to determine the asymp­
totic behavior of the stochastic Lagrangian integrals 
involved. The same is true of the general problem 
represented by Eq. (14). Thus, it is seen that Eqs. (14) 
and (15) yield a suitable resolution of the stochastic 
Eulerian-Lagrangian problem for a large class of 
sound propagation problems if the resultant stochastic 
Lagrangian integrals can be evaluated asymptotically. 
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Quantum mechanical matrix elements often involve orthogonal polynomials, whose properties can 
be exploited for evaluation. Nullity conditions are considered for hydrogenic and harmonic oscillator 
radial integrals, and Gaunt's triangular condition for integrals over triple products of associated Legendre 
functions is generalized so that the superscripts form a triangle of even perimeter. Where the integral is 
nonzero, Gaussian quadratures are exact for polynomial integrands and converge under very general 
conditions. When the integrand is a product of three functions, one of which is a linear polynomial, the 
quadrature is equivalent to first developing summation-orthogonal expansions of the component 
functions and then integrating the product exactly. 

1. INTRODUCTION 

In the evaluation of quantum mechanical matrix 
elements, simple yet powerful integration techniques 
for orthogonal polynomials can often be exploited. 
This is the subject of the present paper. 

Frequently, the interest lies in the possibility that an 
entire class of these integrals vanishes identically. On 
this nullity depend selection rules in spectral transitions, 
the termination of orthogonal expansions, and simpli­
fication of approximate solutions of the Schr6dinger 
problem. If the integral is not zero, it is desirable to 
compute numerical values by simple and efficient 
algorithms. 

In the following, nullity conditions will be derived 
for radial function integrals including the hydrogenic 
case studied by Pasternack and Sternheimer1 and by 
Swamy, Kulkarni, and Biedenharn.2 The investigation 
then leads to a generalization of Gaunt's integraJ3 over 
products of associated Legendre functions. Evalu­
ations by Gaussian quadrature and by expansion of 
the integrand are then discussed. 

2. ORTHOGONAL POLYNOMIALS4 

A simple wavefunction "PL often is proportional to 
[w(X)]icpk(X), where CPk(X) is an orthogonal polynomial 
with respect to w(x) ~ 0 in the interval [a, b]: 

fW(X)CPiX)CPlX) dx = Akbkl • (2.1) 

The subscript can be used to designate the maximum 
degree of the polynomial; this convenience will be 
assumed in this paper.s The quantities w(x), k, and 
perhaps x itself, depend on the collective index L. A 
matrix element may then involve the integral 

1== fw(x)cpnex)Q(X) dx == I(CPnQ). (2.2) 

among other things, polynomials orthogonal possibly 
for a different weight function, and there may be 
several equivalent ways to express the same integral in 
the form I(CPnQ). 

If Q(x) were a polynomial Pn- 1(x) of degree (n - 1) 
or lower, it would possess no component along 
CPn(x), and the integral would vanish: 

n-l 

I( CPnP n-l) = L aml( CPn CPm) = O. (2.3) 
m=O 

This special property of orthogonal polynomials can 
be exploited for the evaluation of quantum mechanical 
integrals. An interesting special case presents itself 
when Q(x) = CPm(X)CPI(X): 

Theorem: J( CPnCPmCPI) vanishes unless 1, m, and n can 
form a triangle, that is, unless I + m ~ n, m + n ~ I, 
and n + / ~ m. 

An extension to associated Legendre functions will 
be seen in Sec. 5. 

Equation (2.3) is clearly useful for the study of 
nullity of integrals; it is also the basis for the Gaussian 
quadrature formula, 6 indicated by JU) below: 

IU) == f w(x)f(x) dx -- i~l W;J(x;) == JU), (2.4) 

where {xJ are the zeros of CPN(X). All of these zeros 
can be proven to lie in [a, b] and to be distinct. The 
formula is exact if f(x) is a polynomial of degree 
~ (2N - 1). A classical proof (Ref. 5, pp. 160--61) 
proceeds by noting that if g(x) is the (N - l)th-degree 
Lagrangian interpolation polynomial agreeing with 
f(x) at {Xi}' thenf(x) - g(x) has as factors CPN(X) and 
some other polynomial PN-1(X) of degree (N - 1) or 
lower. Therefore, 

Usually Q(x) is a product of functions containing, 

1035 
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and I(f) = I(g). The latter becomes J(f) after 
integrating out the x dependency. 

An interesting summation orthogonal property 
follows. 7•s {Wi} are all positive definite and define a 
set of N polynomials orthogonal in the sense of 
weighted summation. This set turns out to be {.pk(X)} 
itself, because 

N 

J( .pk.pZ) = .2 ~.pk(Xi).pZ(Xi) = Aki5kl , k, 1 ~ N - 1. 
i=1 

(2.5) 

Therefore, an arbitrary function can be expanded by 
purely algebraic processes in this finite set: 

f(x) "'-J ~ b
"
.I..,,(x), b, = J( .pJ), P ~ N - 1; to 'f' , J( .pj.pj) 

(2.6) 

the result will satisfy a least-squares property with 
respect to weighted summation, and will closely 
approximate the more difficult, integration-orthogonal 
expansion. 

The maximum allowable summation-orthogonal 
expansion with P = N - 1 turns out to equal g(x), 
the Lagrangian interpolation at {Xi}.8 This is seen by 
noting that f (x) and g(x) have equal expansion 
coefficients. 

3. NULLITY OF A HYDROGENIC RADIAL 
FUNCTION INTEGRAL 

Pasternack and Sternheimerl discovered and proved 
that the hydrogenic radial function integral important 
in multipole transitions, 

II == iWRnIRnl,r2-8 dr, n > 1> 1', s = integer, 

(3.1) 

vanishes for 1 < s ~ 1 - l' + 1. Recently a physical 
explanation has been given in terms of the symmetry 
properties of the Coulomb field. 2 

The - original proof rests on properties of the 
generating function for the Laguerre polynomials. We 
shall now show this nullity to be the explicit conse­
quence of polynomial orthogonality. Since 

Rnl = Nnte-"'/2xIL~~~I(X), with x = 2ZMe2r/nIi2, 
(3.2) 

we have 

where 
(3.3b) 

is a polynomial if, and only if, s ~ I - l' + 1. The 

degree of this polynomial is (n - l' - s), which is 
strictly less than (n - l' - 1) for 1 < s. This is 
precisely the Pasternack-Sternheimer condition. 

The condition is extendable to the case when the 
two Laguerre polynomials have different n's, in which 
case the integral vanishes for n - n' + 1 < s ~ 1 -
l' + 1. Though useful for quantum calculations, this 
generalized result does not apply to Eq. (3.1) with 
differing n's. This is because, in the radial eigenfunc­
tion for the Coulomb field, a change of the principal 
quantum number n necessarily alters x and, in Eq. 
(3.3a), the weight function will be affected.9 

With the Coulomb context, however, a different 
generalization is possible. The integral 

(3.4) 

vanishes if there is a term k = P such that 2jnp = 
.2 (lInk)' and (3 - P - 2np + .2 nk) < S ~ (l -21p + 
.2lk)' As an example, if P = 3 = p, nl = n2 = 2n3 , 

II = 12 = n1 - 1, and 13 = 0, then 12 = 0 for 3n3 < 
s ~ 4n3 - 1. 

4. AN ISOTROPIC HARMONIC OSCILLATOR 
RADIAL INTEGRAL 

The radial function is 

Fnt(r) = Cnze-"'/2xI/2L~~~;:_1)/2(X), 

with x = Mwr2/1i. The integral 

13 == LXl F nz(r)F n'I,(r)r2
-

8 dr, 1 Z 1', (4.1) 

vanishes for n - n' < s ~ 1 - 1', if s + 1 + l' is an 
even integer. 

5. A GENERALIZATION OF GAUNT'S 
TRIANGULAR CONDITION 

Gaunt3 studied the important integral involving a 
triple product of associated Legendre functions 

14 == L:1

p;n(x)p;':'(X)Pr-"(X) dx, 

m ~ 1, m ' ~ 1', mil ~ I", (5.1) 

for the case mil = m + m', and formulated the 
triangular condition, namely that 14 with mil = m + 
m' vanishes unless I, 1', and l" form a triangle of even 
perimeter. The theorem was proved using repeated 
integration by parts starting from the Rodriguez 
formula for P;"(x). 

We shall present a simpler proof of a more general 
theorem. With no loss of generality, we assume m, 
m', and mil to be positive. 
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Theorem: If m, m', and mil form a triangle of even 
perimeter, then h will vanish unless I, l', and l" also 
form a triangle of even perimeter. 

Proof' Expressing P[,,(x) in Gegenbauer polynomials 
{c~(x)} orthogonal in [-1, + 1] with respect to the 
weight function (1 - X2).l._1/2, 

pm(X) = K (1 - x2)mI2cm+1/2(x) 
l ml l-m' (5.2) 

(5.3a) 

with 

Qix) = (1 - x2)(m'+m"-m)/2Cr~-;;!2(x)Cz':-:~t.~!2(x). 

(5.3b) 

The triangular condition on the m's shows that the 
integrand is even if and only if (l + l' + 1") is even. 
Further, Q4(X) is guaranteed to be a polynomial of 
degree (/' + l" - m). For 14 ¥: 0 the latter quantity 
must be no less than 1 - m, that is, l' + l" ~ I. 
Similarly, we obtain I" + I ~ l' and 1 + l' ~ 1". 

QED 
An extension follows. 

Theorem: The integral 

n = integer, (5.4) 

vanishes if either of the following conditions holds: 

(a) n + Ilk - I mk is an odd integer; 
(b) I mk = even; further, there is a term withk = p 

such that I mk ~ 2mp and n + I Ik < 21p with 
2n + Ik7"P (1 - (_IYk-mk) ~ 0 (i.e., a negative 
n will be compensated for by a sufficient number 
of Gegenbauer polynomials of odd order). 

6. INTEGRATION BY GAUSSIAN 
QUADRATURES 

The integral I in Eq. (2.2) may need evaluation if 
the test for nullity fails. Here the use of Gaussian 
quadratures [Eq. (2.4)] is straightforward and 
effective, requiring only the tabular values {Wi} and 
{Xi} and the ability to evaluate the integrand. If Q(x) 
is a polynomial of degree m, then the quadrature with 
N> (n + m)[2 will be exact, barring round-off errors. 
Further, the formula need not be based on w(x); 
other weight functions can be employed to gain 
exactitude, efficiency, or simplicity. 

Analytical formulas for some of these integrals 
exist; for instance, MillerlO has treated the case when 
the integrands are products of associated Legendre 
functions or products of generalized Laguerre 
functions. These same integrals are easily calculable 

by Gaussian quadratures by using a computer and no 
less accurately, particularly if the number P of 
components in the product is large. For example, if 
the evaluation cost per component is K, the total cost 
for an N-point quadrature is measured by KNP. 
Miller's analytical formulas lead usually to an P-fold 
coupled sum; if the evaluation effort per term is K 
and the number of terms per sum is N, the total cost 
would be measured by KNP

• 

For repeated evaluations, the components of the 
product integrand can be pretabulated at the Gaussian 
abscissas, replacing the evaluation cost by table 
look-ups. The writer has evaluated 14 , Eq. (5.1) for 
I m = even, by a modification of the Legendre-Gauss 
quadraturell : 

N 

14 = IR;"(xi)R;'}'(xi)R?!"(xi), N > (l + I' + 1")/2, 
i~1 

(6.1) 

with R7'(xi ) = Wilp;"(xi ) stored in the computer as 
table entries.!2 

Further, the choice of the weight function other 
than w(x) can transform the integrand [4>nQ in Eq. 
(2.2)] into a polynomial. 14 and Is,n > O,are exact 
with I m = even, using Legendre-Gauss quadratures; 
Chebyshev-Gauss quadratures will be exact for 
I m = odd. Standard Laguerre-Gauss quadratures are 
perfect for II and 12 when (s - 2) is not greater than 
the sum of orbital quantum numbers; a generalization 
with w(x) = e-xxa , IX = 0 or -t, will evaluate 
exactly 13 for s :::;; 1+ l' + I. 

7. SUMMATION-ORTHOGONAL EXPANSION OF 
THE PRODUCT INTEGRANDS 

Where Q(x) cannot be transformed into a poly­
nomial, Gaussian quadratures can still be highly 
accurate, especially if the integrand shows few singu­
larities. 6 For finite integration limits, the Gaussian 
quadrature with N --+ Cf) converges to the integral if 
the integrandf(x) in Eq. (2.4) is continuous, or even 
discontinuous but bounded and Riemann-integrable. 
For the Hermite-Gauss or generalized Laguerre­
Gauss quadratures, convergence occurs if, for large 
lxi, I w(x)f (x)1 tends to zero faster than I/ixi. 

Alternatively, one could adopt the costlier strategy 
of first approximating the integrand and then inte­
grating the result. However, it must be noted that an 
accurate yet inexact integrand approximation does not 
necessarily imply accuracy of the integral. Conversely, 
an accurate integration technique may result from 
averaging out sizable deviations in an approximate 
integrand; indeed, the accuracy of Gaussian quadra­
tures is achieved by minimizing the error of the 
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integral itself, while de-emphasizing integrand ac­
curacy. One also notes that the approximation off(x) 
may not be adequate if w(x) is nontrivial. 

However, one could exploit the summation­
orthogonal property associated with quadratures,8 
and be protected by the least-squares property. The 
weight function is not a concern as long as the proper 
abscissas and weights are available. Now the most 
powerful summation-orthogonal expansion using 
{4>k(X)} is achieved by Gaussian quadratures, and the 
maximal expansion for a given N is, as noted in Sec. 2, 
the Lagrangian interpolation at zeros of 4>N(X). The 
definite integral of the interpolation is, of course, the 
quadrature itself. 

Therefore, Gaussian quadratures actually offer a 
short cut to the "expansion then integrate" techniques. 
To ascertain the accuracy of the expansion, one could 
examine the magnitudes of the last few Fourier 
coefficients through Eq. (2.7), and change N if these 
were not small enough; or coefficients from two or 
more quadratures can be compared for consistency,l3 
It is not desirable to "check the convergence" by 
integrating various projections of the same expansion; 
the act of integration is fundamentally a projection 
along 4>o(x) only. 

The quantum-mechanical integrals not only have a 
nontrivial w(x), the integrand further is a product of 
functions. Each of these functions could be individually 
approximated, before integration; this may be very 
desirable because many of these are already poly­
nomials, with known properties. Even then, however, 
the result may be no better than direct quadratures. 

Theorem: Let {gk(X)} be the (N - I)-degree Lagran­
gian interpolation pOlynomials agreeing with {fk(X)} at 
the zeros {Xi} of 4>N(X), If gl(X)g2(X) ... gp(x) is a 
polynomial of degree 2N - 1, then l(glg2' .. gp) = 

J(!Ih" ·fp)· 

Proof' l(gl'" gp) is exactly represented by the 
Gaussian quadrature J(gl ... gp), which due to the 
interpolation nature of {gix)} is equal to J(h .. ·fp)· 

QED 

Corollary 1: l(glPN) = J(jlPN), if PN(x) is any Nth­
degree polynomial. This is proved by factoring P N 

conceptually into two Lagrangian polynomials. 

Corollary 2: l(glg2Pl) = J(fd2Pl)' if P1(x) is any 
linear polynomial. 

In Eq. (2.2) it might appear attractive to expand 
Q(x) and take the projection along 4>n(x); this would 
yield exact results if the expansion were based on 
integration orthogonality. However, by Corollary 1 
the Gaussian quadrature already behaves as if Q(x) 
has been replaced by the maximal summation­
orthogonal expansion. 

ACKNOWLEDGMENTS 

The writer acknowledges the stimulation received 
from Dr. R. A. Willoughby, IBM Watson Research 
Center, and Dr. T.-S. Shao, Bell Telephone Labora­
tories. He is grateful for the hospitality extended by 
Professor P.-O. L6wdin during the writer's stay at 
the Quantum Chemistry Institute, University of 
Uppsala, Sweden, where views in this work became 
crystallized through discussion with colleagues. 
Professor P. F. Zweifel, Virginia Polytechnic Institute, 
offered valuable comments on a draft of the manu­
script. 

1 S. Pasternack and R. M. Stern heimer, J. Math. Phys. 3, 1280 
(1962). 

• N. V. V. J. Swamy, R. G. Kulkarni, and L. C. Biedenharn, J. 
Math. Phys. 11, 1165 (1970). 

3 J. A. Gaunt, Phil. Trans. Roy. Soc. (London) A228, 151 (1929), 
esp. pp. 192-96. 

4 See, for example, G. Szego, Orthogonal Polynomials, Am. Math. 
Colloquium Publications 23 (American Mathematical Society, 
Providence, R.I., 1959), rev. ed. 

• Our notations for orthogonal polynomials follow those in A. 
Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher 
Transcendental Functions (McGraw-Hili, New York, 1953), Vol. 2, 
Chap. X. 

• See Refs. 4, 5, and also A. H. Stroud and D. Secrest, Gaussian 
Integration Formulas (Prentice-Hall, Englewood Cliffs, N.J., 1966), 
and P. J. Davis and P. Rabinowitz, Numerical Integration (Ginn­
Blaisdell, Waltham, Mass., 1967). 

7 C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, 
N.J., 1956), pp. 376-78. 

8 T. C. Chen, Rev. Mod. Phys. 35, 569 (1963). 
• If (rlx) were independent of n, then the set of discrete radial 

functions Rn,(r) for /1 > I would become complete; on the other 
hand, the Coulomb field demands that Rn,(r) be incomplete unless 
augmented by the continuum Coulomb functions. See H. Shull and 
P.-O. Lowdin, J. Chern. Phys. 23, 1555 (1955). 

10 J. Miller, Math. Computations 17, 84 (1963). 
11 In numerical work it is common to prefix the quadrature name 

by the name of the orthogonal polynomials employed. Thus, 
Legendre-Gauss quadratures are Gaussian quadratures based on 
Legendre polynomials. 

l2T. C. Chen, Ph.D. thesis, Duke University, 1957, Chap. V. 
13 T. C. Chen, (unpublished). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 6 JUNE 1971 

Gravitation as a Consequence of the Self-Interaction 
of the f Fields * 

MARIO NOVELLO 

Centro Brasileiro de Pesquisas Fisicas 

and 

Institut de Physique Thtforique, Universite de Geneve, Geneve, Switzerland 

(Received 11 June 1970) 

We investigate an algebraic-geometric approach to field theory. We try to prove that it is possible to 
understand Einstein's gravitational equation as a consequence of the self-interaction of the fundamental 
r fields of the assumed Clifford algebra. Furthermore, the antisymmetric object of the algebra obeys a 
set of equation~ that has the same structure as Maxwell's equations. 

INTRODUCTION 

Since the early days of the paper of Infeld-van der 
Waerden on spinor analysis, many authors have 
investigated a theory that makes some element of a 
Clifford algebra a more fundamental object than the 
metric tensor.1 Even if we do not consider this kind 
of hierarchy, we can use a generalized space-time 
spinor algebra in the analysis of the interaction of a 
fermion with the gravitational field, for instance.2 

A somewhat different use of this algebra has also been 
made3 (Penrose and Pi rani) in studying some prop­
erties of the gravitational field and even in some 
models of a unified field theory.4 In this paper we 
will consider the Clifford algebra as fundamental in 
a sense that will soon be clear. 

1. THE FUNDAMENTAL OBJECT 

Let us consider a set of objects ea that can generate 
a universal Clifford algebra (C-algebra) over a four­
dimensional differentiable manifold V4 • From the 
well-known property of the C-algebra, 

(1) 

is a multiple of the identity of the algebra, where, as 
usual, 

{M, N} = MN + NM. (2) 

It is well-knowns that the dimension of this algebra is 
24. We will represent the elements of the basis as the 
set 

11., 

fa, 

~ .. fJ = !(r .. rfJ - rfJr .. ), 
r s = lJ!(x)eaP,l·Jlrarpr).rJl' 

rars = lJ!(x)eltvP.TfarJlrvfpr,,, 

with rsrs = 11. , (3) 

where the index IX, fJ has a tensorial character. This 
means that if we make a transformation of coordinates 

(4) 

the ra behave as a vector, the fS as a scalar, and ~ .. fJ 
as an anti symmetrical tensor of second order. In our 
choice of the representation of the algebra, the 
elements of the basis have a two-index property. 
Let us write 

rAE 
a , (5) 

where A, B may assume the values 1,2,3, or 4. We 
assume that there is a group of internal transforma­
tions with a space-time dependence-that is, the f's 
may suffer a transformation like 

f..{x) --+ f~AB(X) = M~f~D(X)MDIB, (6) 

where M~ is not a constant. 
The fundamental property of the C-algebra 

{fix), f.(x)} = 2gJl.(x)11 (7) 

defines the symmetric metric tensor gJlv(x), 11 is the 
identity element of the algebra. We have furthermore 

{fJl(x), fS(x)} = O. (8) 

2. THE SELF-INTERACTION 

We will assume here6 that the f's satisfy an equa­
tion of the type 

f .. 11fJ(x) = [Up(x), f..{x)], (9) 

where the brackets, as usual, mean the commutator 
and the symbol II means the covariant derivative 
defined by 

f allfJ = f a1fJ - t~}fE + ['TfJ' fa], (10) 

af 
means ~, ax 
is the Christoffel symbol, 

'Tp is the internal affinity. 

The origin of the expression (9) rests on the assump­
tion that the correlation, at separate points, between 

1039 
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the r's, even in the existence of the group of trans­
formation (6), does not introduce any new field. This 
is equivalent to assuming that the internal affinity may 
be expressed as a function of the objects of the 
C-algebra only. 

The object U:B(x) as obtained in Ref. 6 has the 
form 

U:B(x) = {r.cx)(Jl + r5(x»}AB. (11) 

A straightforward calculation shows that the 
covariant derivative is not commutative and that we 
may write 

rallPII)' - rallAllP = Rafp),r
f 

+ [lRp)., raJ, (12) 

where Rafp )' is the Riemann (curvature) tensor, lRaP 
is the internal curvature. 

3. THE GRAVITATIONAL FIELD 

From Eqs. (9) and (II) we obtain 

(raIlPII)' - rallAllP)gaP = o. 
So, we have 

or 

(13) 

(14) 

(15) 

What can we say about the form of the internal 
curvature? It is an easy matter to prove that 

qallP = O. (16) 

From this and from the consideration that 

qallP - qplla = [lRap, r
5
], 

we obtain 
(17) 

(18) 

The most general expression of the internal curva­
ture obtained as an element of the Clifford algebra 
and satisfying Eq. (18) has the form 

lRaP = SapJl + Papr 5 + BafrTp - Bpfrfra , (19) 

where SaP' PaP' and Bap are pure tensors that satisfy 
the symmetry conditions 

SaP + Spa = 0, (20) 

PaP + Ppa = O. (21) 

If we put expression (19) into (15) we obtain two 
separate equations 

PaP = 0, (22) 

Rap - 2BgaP - 4Bap = 0, (23) 

where 
B = Bapga/i. (24) 

From these considerations we see that the expression 
(9) induces a relation between the contracted Rieman­
nian curvature (Ricci tensor) and a tensorial field. 
If we assume that the divergence of the tensor field 
BaP(x) is null, then we arrive at a contradiction. So, 
we cannot identify Bap directly as a conserved energy­
momentum tensor. If we assume otherwise that 

(25) 
where 

(26) 

then expression (23) assumes the form 

(27) 

for a particular choice of the functions M and N. 
We see that, in this case, relation (25) (where TaP 

is the momentum tensor) implies that Eq. (23) is just 
Einstein's equation of gravitational theory. 

4. THE ANTISYMMETRICAL OBJECT 

Let us see what are the relations that Eq. (9) gives 
for the antisymmetrical product 

L.ap = iCrarp - rpra)· 

A straightforward calculation can show that 

L.aPIIA = 2{ga),rp - gp),ra}(11 + r 5
). 

If we define 

1 
L.(aPIIA} = 3! {L.aPII)' - L.a).IIP + L.P).lla 

(28) 

(29) 

then (29) gives 
- L.PalIA + L.).aIIP - L.APlla}, (30) 

L.{aPII).} = O. (31) 

Let us now evaluate the divergence of L.1l. We 
obtain 

L.plla = 6rp(Jl+ r 5
). 

If we define the current JtB as 

Jp = 6rp(Jl + r 5
), 

we obtain the continuity equation 

J~p = O. 

(32) 

(33) 

(34) 

Equation (31) shows that we may introduce a 
potential {J-;B such that 

"1:. AB {JAB {JAB ap = alIP- /ilia' (35) 

A choice for this potential may be 

{Ja = (const)ra· (36) 
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We see that these relations are just Maxwell's 
equations applied to an object that has an internal 
structure besides the tensor character of the usual 
electromagnetic field. 
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dimensions, including the case of the conformal group of space-time. 

I. INTRODUCTION 
A. Harmonic Expansions for Noncompact Groups 

In many applications of group theory in physics it 
is important to know the lattice of subgroups of a 
given group. The tools used by physicists are usually 
group representations realized in a definite vector 
space with a specified basis. For Lie groups, the 
simplest choices of bases can be obtained from chains 
of those subgroups which have Casimir invariants of 
some order, these invariants being used to obtain a 
complete set of commuting operators in the representa­
tion space. Two subgroup chains are physically 
equivalent if the subgroups in the one chain are con­
jugate to those in the other, so that we need only study 
the conjugacy classes of subgroups of a given group. 
The physical nonequivalence of various bases of 
group representation spaces has recently received 
considerable attention for the Lorentz and Poincare 
groups.1-4 Bases obtained from subgroup chains have 
been systematically studied for the representations of 
the little groups of the Poincare group.5.6 

We study here the classification of the conjugacy 
classes of all one-parameter subgroups of the unitary 
groups U(p, q) and the special unitary groups SU(p, q). 
In particular, we examine the one-parameter sub­
groups of the conformal group SU(2, 2), thus pre­
paring the way for a more general study of all the 
connected analytic subgroups of the conformal group. 
For this more general program, the classification 
of low-dimensional real Lie algebras given by 
Mubarakzjanov should prove useful.7 The con­
formal group SU(2, 2) is the smallest simple Lie group 
containing a subgroup isomorphic to the Poincare 
group. Hence a study of the subgroup lattice of the 
conformal group should, as a by-product, shed some 
light on the subgroup lattice of the Poincare group. 

The choice of bases of group representation spaces 
by the use of subgroup chains also has applications to 
harmonic analysis on Lie groups and homogeneous 
manifolds. s Such harmonic analysis constitutes the 
mathematical foundation for recent generalizations of 
the partial wave analysis of scattering amplitudes. 
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been systematically studied for the representations of 
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Here each subgroup chain leads to a different har-
monic expansion.9 ' 

The standard partial wave expansion of a nonrela­
tivistic two-body scattering amplitude for a fixed 
energy is an expansion in terms of the spherical func­
tions of the rotation group SO(3, R). Such partial 
wave expansions can be generalized to the scattering 
of relativistic particles, and also further developed 
in two directions. The first type of development leads 
to little group expansions for fixed total energy­
momentum squared s, or for fixed momentum­
transfer squared t. These are expansions in terms of 
the basis functions or finite transformation matrices 
of the SO(3, R), SO(2, 1; R), E(2, R), and SO(3, 1; R) 
little groups of the Poincare group.2.10-I2 The second 
approach l ,5.12.13 leads to two-variable expansions of 
relativistic two-body scattering amplitudes j(s, t) as a 
function of the two invariant Mandelstam variables 
sand t. The scattering amplitude is regarded as a 
function on a hyperboloid in relativistic momentum 
or velocity space, and is expanded in terms of har­
monic functions of a Lorentz group acting on this 
hyperboloid. The subgroup chains SO(3, 1; R) ~ G ~ 
SO(2, R), where G is either SO(3, R), SO(2, I; R), or 
E(2, R), lead to three different harmonic expansions. 
The subgroup G in each chain here furnishes a single­
variable expansion coinciding with the corresponding 
little group expansion. The group SO(3, 1; R) then 
supplements this little group expansion with a 
further expansion of the relevant partial-wave 
amplitude in terms of functions of the other kine­
matical variable. Thus the SO(3, 1; R) two-variable 
expansions, by incorporating the whole little group 
formalism, make full use of the Lorentz invariance of 
the scattering amplitude. The hyperboloid formalism 
is mainly a mathematical convenience, and one could 
let the SO(3, 1; R) group act directly on the Mandel­
stam plane, albeit then with this induced action being 
different for each subgroup chain. The group 
SO(3, I; R), acting here as a group of motions on a 
homogeneous space of kinematical variables, is not 
the physical Lorentz group and could be replaced by 
some other group such as SU(3). In the case of scat­
tering with all four external masses equal, two­
variable expansions based on an SU(3) group of 
motions have been written, having the advantage of 
convenient crossing properties.14 The scattering 
amplitude is expanded in terms of eigenfunctions of 
a differential operator L~ + L~ + L! which is sym­
metric in s, t, u. This operator commutes with the 
angular momenta in all three physical channels of a 
two-body process and can be interpreted as the 
second-order Casimir invariant fpr an SU(3) group. 

The harmonic expansions in all three channels will be 
in terms of eigenfunctions of this one operator, 
making the appropriate crossing matrix block 
diagonal. The compact group SU(3) only furnishes 
expansions in finite regions such as the unphysical 
Euclidean triangle in the Mandelstam plane, but a 
generalization to physical regions may be possible 
using the noncompact group SU(2, 1). 

The specific form of the harmonic expansion 
depends not only on the group chosen, but also on 
the chosen subgroup chain. It should be pointed out, 
however, that there are also some interesting expan­
sions which are not based on subgroup chains.15 All 
subgroups of SU(2, 1) have recently been classified.16 

Since it was found that the group SU(2, 1) does not 
contain an E(2, R) subgroup, expansions based on it 
cannot fully incorporate the Poincare little group 
formalism. On the other hand, expansions based on 
SO(3, 1; R) do not have simple crossing properties, 
and one may therefore want to find another group 
which combines the best features of SU(2, 1) and 
SO(3, 1; R). The conformal group SU(2, 2), locally 
isomorphic to SO(4, 2; R), is a bigger group, which 
may have harmonic expansions fully incorporating 
the little group formalism and which have simple 
crossing properties.17 Furthermore, the group SU(2, 2) 
can be used for reactions involving mass-zero par­
ticles and for five-point production amplitudes. 
Harmonic analysis on SU(2, 2) may also be of interest 
for another reason if this group becomes a symmetry 
group at very high energy. In this case one would like 
to study whether conformal invariance is compatible 
with Regge asymptotic behavior and, if so, to write a 
conformal invariant analog of the Regge pole 
formula.1s Still more generally, one could consider 
harmonic analysis on any of the groups SU(p, q), for 
which the Plancherel measure has recently been com­
puted.19 

B. Indefinite Metrics 

The classification of one-parameter subgroups of 
unitary groups, with the related classification of 
canonical forms for Hermitian linear operators with 
respect to an indefinite metric, has many other 
applications. In quantum electrodynamics or in the 
theory of a mass-zero vector meson, an indefinite 
metric in the state vector space may help to satisfy 
simultaneous requirements of positive-energy density, 
relativistic covariance, and the subsidiary conditions 
on the fields. 20 (The Lorentz condition of classical 
electrodynamics is replaced in the Gupta theory of 
quantum electrodynamics by a subsidiary condition 
which requires the physical Hilbert subspace of the 
complete state vector space to be the kernel of a 
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certain linear operator, namely, the divergence of the 
positive-frequency part of the electromagnetic poten­
tial4-vector.) 

Heisenberg has also studied the use of an indefinite 
metric in the state vector space as a method for 
implementing the Pauli-Villars regularization method 
for obtaining finite renormalization constants in a 
nonlinear spinor theory.21 The nonsingular Hermitian 
quantum state vector space in the Heisenberg theory 
is an orthogonal direct sum of an anisotropic Hilbert 
subspace of normal physical states and a hyperbolic 
subspace of dipole ghost states, both of these subspaces 
being invariant under the Hamiltonian operator. 
More recently, Kastrup has proposed a method 
whereby such an indefinite metric may have a con­
nection with the conformal group.22 A specific 
indefinite-metric field theory was recently suggested 
by Lee and Wick, in which unphysical states with 
complex energies are introduced. In such theories it 
is important to know how many real and how many 
complex eigenvalues can exist for a given dimension.28 

A classification of Hermitian linear operators in 
Hermitian spaces with an indefinite metric is of 
interest for these theories, but, in this article, a 
complete solution of this problem is given only for 
finite-dimensional spaces. For the case of quantum 
field theories with indefinite metric in an infinite­
dimensional state vector space, the present results are 
directly applicable only to invariant subspaces with 
finite dimension, a special case which is still of con­
siderable interest, nevertheless. For example, in such 
theories, the Hamiltonian is assumed to be Hermitian 
with respect to the indefinite metric. By quantizing 
in a box of finite volume, the spectrum of the 
Hamiltonian becomes discrete, and it is reasonable to 
assume that most of the energy levels have only 
finite degeneracy. Thus the subspaces of states 
corresponding to a fixed finite interval of energies 
may be finite-dimensional vector spaces to which our 
results will apply. A similar application of indefinite 
metrics is to the theory of degenerate Bethe-Salpeter 
equations. Hermitian operators on finite-dimensional 
vector spaces with indefinite metric arise here in the 
study of the residues of the multiple poles of the 
Bethe-Salpeter Green's functions.24 The deeper ques­
tion of studying infinite-dimensional topological and 
pseudotopological vector spaces with an indefinite 
metric will not be pursued here.2s We may finally also 
mention that some results on the spectra of Hermitian 
operators can be obtained for infinite-dimensional 
spaces when they are irreducible unitary representation 
spaces.26 

We now turn our attention to a different problem. 

While we have studied unitary groups with an indefi­
nite metric, in some of the problems of interest, we 
could instead have studied orthogonal groups with 
indefinite metric. For example, since the conformal 
group is locally isomorphic both to SU(2, 2) and to 
SO(4, 2; R), the classification of its analytic subgroups 
may also be obtained by studying subgroup lattices 
of real orthogonal groups with indefinite metric. The 
conjugacy classes of subgroups of real orthogonal 
groups with indefinite metric have been studied 
previously for some special cases. The most celebrated 
case27 is that of the Lorentz group SO(3, I; R), which 
is also locally isomorphic to the complex special linear 
group SL(2, C). The subgroups of the ordinary 
Lorentz group have been listed by various authors.s.28 

Another well-studied case is that of the plane Lorentz 
group SO(2, 1; R), which is locally isomorphic also 
to SU(l, 1) and to SL(2, R). The structure of the 
group SO(2, 2; R) has been extensively studied in a 
series of papers by Zassenhaus.29 The conjugacy 
classes of the two de Sitter groups SO(4, 1; R) and 
SO(3, 2; R) were recently investigated by Philips and 
Wigner.3o 

Another problem related to the structure of orthog­
onal groups occurs in the general theory of relativity 
in connection with the Petrov classification of Einstein 
spaces.31 Here the problem is to study the algebraic 
structure of the Riemann curvature tensor, which 
satisfies 

and 
R apyd + Rayap + R dPy = O. 

Since the curvature tensor is symmetric under the 
interchange of the first two indices with the last two 
indices, we may regard it as a symmetric linear 
operator on a suitable vector space. Since the curvature 
tensor is also antisymmetric in the first two indices, 
the vector space in question can be taken as the space 
of antisymmetric two-index tensors. Thus, if V is the 
tangent space at a point of a Riemann space, then the 
curvature tensor may be regarded as a symmetric 
linear operator on the Grassmann product space 
V A V. If V has metric signature (p, q), then V A V 
has an induced metric signature (p', q'), where p' = 
t[p(p - 1) + q(q - 1)] and q' = pq. In the case of 
a four-dimensional Riemann space with metric 
signature (++++), (+++-), or (++--), 
the induced metric signature is (+ + + + + +), 
(+++---), or (++----), respectively. For 
the Minkowski signature, the group relevant for study­
ing the curvature tensor is SO(3, 3; R), which is also 
locally isomorphic to the real special linear group 
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SL(4, R). The subgroups of the corresponding group 
SL(3, R) in three dimensions were enumerated by 
Nono in connection with the classification of isotropy 
groups of smooth, materially uniform simple bodies.32 

The conformal group of space-time is of interest in 
physics since all relativistically invariant free-field 
wave equations for zero-mass particles are also 
invariant under the conformal group.33.34 Of current 
interest is the widely investigated conjecture that 
exact or broken conformal symmetry is relevant for 
scattering at very high energies and momentum 
transfers.35 For a large class of relativistic interactions, 
conformal invariance would be implied by in variance 
under the one-parameter scale-transformation sub­
group of the conformal group. The preliminary 
experimental evidence for scaling laws in deep­
inelastic electroproduction has stimulated interest in 
the conformal group.36 Finally, we note that the 
conformal group has been proposed as a dynamical 
group for hadrons,37 in analogy with the use of this 
same group for the description of the hydrogen atom. 
It is also in connection with these recent developments 
that a detailed study of the structure of the conformal 
group is of interest. 

II. ONE-PARAMETER SUBGROUPS 

A. Structure of Pseudo-Hermitian Operators 

In this section we study unitary groups U(p, q) and 
special unitary groups SU(p, q), classifying their one­
parameter subgroups by using canonical forms for 
Hermitian linear operators on finite-dimensional 
vector spaces with indefinite metric. Our general 
approach may be described as an application of a 
combination of the Jordan canonical form theory 
with geometric algebra.3s We make free use of the 
standard mathematical terminology concerning direct 
sums, orthogonal direct sums, invariant subspaces, 
and so forth.39 For a positive-definite metric, we know 
from elementary quantum mechanics that the ordinary 
eigenvector theory suffices, and we can set up a 
parallel theory in the case of an indefinite metric by 
using generalized eigenvectors.4o A nonzero vector 
1p in a complex vector space V is said to be a general­
ized eigenvector of a linear operator y on V iff 
(y - c1)P1p = 0 for some complex number c and 
some positive integer p. The Dirac spinor space, 
which we may characterize as a four-dimensional 
complex vector space C4 equipped with the metric 
( + + - -), is a familiar example of a Hermitian 
space with indefinite metric. For convenience we shall 
use the Dirac notation 1>1p for Hermitian forms in 
general. Unitary and special unitary groups with 
indefinite metric arise naturally in the study of the 

geometry of Hermitian spaces.u In particular, the 
conformal group SU(2, 2) is the special unitary group 
of Dirac spinor space.42 

By a Hermitian linear operator y on a Hermitian 
space V we mean any linear operator satisfying 

(YCP)1p = 1>(Y1p) for all cP, 1p in V. In the case of an 
indefinite metric, such operators are sometimes also 
called "pseudo-Hermitian" in the physics literature. 
If S is an invariant subspace of a Hermitian linear 
operator y on a Hermitian space V, then the orthog­
onal complement S1. is also an invariant subspace. 
The primary component V~ is the subspace of V 
consisting of zero and all generalized eigenvectors of 
y corresponding to the eigenvalue c, if any. A lot is 
known about the primary components of a Hermitian 
operator when the Hermitian space V is nonsingular, 
that is, when V1. = O. If y is a Hermitian linear 
operator on a nonsingular Hermitian space V and if 
c is real, then the primary component V~ is non­
singular. We recall that a subspace S of a Hermitian 
space V is nonsingular iff its radical S n S1. is zero. 
If C1 and C2 are not complex conjugates of each other, 
then the primary components V;' and V;2 are orthog­
onal to each other. Thus, when c is not real, the pri­
mary component V~ is orthogonal to itself and hence 
totally isotropic in the sense that 1p1p = 0 for all '!{J in 
V~. On the other hand, if C1 and C2 are complex 
conjugate to each other and if V is nonsingular, then 
V~' and V~2 have the same dimension, and their 
direct sum is nonsingular. The proofs of these asser­
tions, as weII as of other theorems to be quoted below, 
may be found in the Appendix.43 

We now introduce the important new concept of an 
elementary invariant subspace, bearing the same 
relation to orthogonal direct sums that the usual 
concept of indecomposable invariant subspace bears 
to ordinary direct sums. An elementary invariant 
subspace of an operator is an invariant subspace 
which cannot be written as an orthogonal direct sum 
of two nonzero invariant subspaces. If V is finite 
dimensional, it is the orthogonal direct sum of 
elementary invariant subspaces, V = S1 J. ... J. Sn. 
This raises the problem of studying elementary 
Hermitian operators, that is, Hermitian linear 
operators y on nonsingular Hermitian spaces V for 
which V is itself elementary. If y is an elementary 
Hermitian operator on a finite-dimensional non­
singular Hermitian space V, then either V = V;, 
where r is real, or else V = V;+iS EB V;-zs, where r is 
real and s > O. Hence either (y - r I)n = 0 for some 
integer n, or else [(y - rl)2 + s21]P = 0 for some 
integer p. If a Hermitian operator y on a Hermitian 
space V is nilpotent with yn = 0, then the cyclic 
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invariant subspace S generated by a vector "P in V is 
a nonsingular n-dimensional subspace iff ipyn-I"P :;t. O. 
For an elementary Hermitian linear operator y with 
V = V;, it then follows that V is cyclic as well as 
primary and hence indecomposable. Similarly, for an 
elementary Hermitian operator y with V = V;+'s 8:l 
V~-i., where s > 0, the two primary components are 
again indecomposable. Thus an elementary subspace 
of a Hermitian operator on a nonsingular Hermitian 
space is either a nonsingular indecomposable invariant 
subspace or else the ordinary direct sum of a pair of 
totally isotropic invariant subspaces. 

All maximal totally isotropic subspaces of a 
Hermitian space have the same dimension, called the 
index of the Hermitian space. The index of a non­
singular Hermitian space of dimension n cannot 
exceed [nI2] and, if the index is equal to [nI2], then 
we say that the space has maximal index. More 
simply stated, a nonsingular Hermitian space has 
maximal index iff the numbers of + 's and - 's in its 
metric signature are either the same or differ by one. 
Elementary invariant subspaces of a Hermitian linear 
operator on a finite-dimensional nonsingular Hermit­
ian space have maximal index. The classification of 
Hermitian operators up to conjugacy then reduces 
via the Witt theorem to two problems.44 The first 
problem is to find the possible ways of decomposing 
a given nonsingular Hermitian space as an orthogonal 
direct sum of maximal index nonsingular subspaces. 
These maximal index decompositions are readily 
found in each case by inspection. The second problem 
is to find the conjugacy classes of elementary Hermit­
ian operators on a given maximal index nonsingular 
space. Our solution of the second problem is to make 
use of explicit canonical forms. A set of vectors 
"PI' ... , "Pn is said to be an orthonormal basis for the 
nonsingular Hermitian space V with signature (p, q) 
iff ipi"Pj is 0 when i :;t. j, + I when i = j S p, and -I 
when i = j > p. In the case V = V;, there exists a 
cyclic vector 4> in V such that q,(y - rl)k4> is equal to 
E = ± I when k = n - I and to zero otherwise. We 
can find an orthonormal basis consisting of various 
polynomials in y acting on this cyclic vector 4>, 
yielding a canonical matrix for y which is slightly 
different for even and odd dimensional spaces. In the 
odd-dimensional case, the quantity E just determines 
whether the metric signature has one more + sign or 
one more - sign. In the even-dimensional case, there 
is only one possible maximal index metric signature, 
and the quantity E = ± 1 serves to distinguish two 
nonconjugate classes of Hermitian operators having 
identical Jordan canonical forms.45 The case of an 
elementary Hermitian operator y with V = V;+iS 8:l 

V;-iS can occur only for even dimension n = dim V = 
2p. In this case we can find a pair of cyclic vectors 4>± 
in V;±iS, respectively, such that q,_[y - (r + is)IJ"4>+ 
is equal to 1 for k = P - I and to 0 otherwise. 
Having a pair of vectors gives more freedom for 
adjusting normalizations, so that in this case there is no 
analog of the quantity E. Here again a canonical form 
is obtained by constructing an orthonormal basis 
consisting of linear combinations of polynomials in 
y acting on 4>+ and 4>-. 

In all there are five cases to consider, listed below. 

Case Metric Eigenvalues Other parameters 

I (p + I,p) r E = +1 
II (p,p + I) r E = -I 
III (p,p) r E = +1 
IV (p,p) r E = -I 
V (p,p) r ± is 

These cases are all nonconjugate; but, in the fifth case, 
the canonical forms differing only by the sign of s are 
conjugate, and we must therefore restrict s to be 
positive (say). In the Tables I-III listing the canonical 
matrices, we have combined cases differing only by 
the value of the parameter E. 

B. Low-Dimensional Cases 

We now study the one-parameter subgroups of 
two-, three-, and four-dimensional unitary and special 
unitary groups with indefinite metric in some detail. 
We apply the general classification of Hermitian 
linear operators given above to the low-dimensional 
Hermitian spaces C2(1, 1), C3(2, I), C4(2,2), and 
C4(3, I). Historically, we first obtained these canonical 
forms in the low-dimensional cases by direct calcula­
tion and then generalized the results to the case of any 
finite dimension, but it is more elegant to do it the 
other way around. 

The simplest illustration of the application of the 
general theory is to the case of Hermitian operators 
on the two-dimensional Hermitian space C2(l, 1). 
In this case, the most general Hermitian matrix is of 
the form 

[
A + D B + iC] 

-B + iC A - D ' 

where A, B, C, and D are real numbers. The eigen­
values of this matrix are given by 

A ± (D2 - B2 - C2)}. 

There are thus three spectral cases, depending on 
whether D2 is greater than, less than, or equal to 
B2 + C2, corresponding respectively to a pair of 
distinct real eigenvalues, a complex conjugate pair, 
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TABLE I. Canonical elementary Hermitian matrix with a single real eigenvalue r 
in the' even-dimensional case. 

r 0 0 -1 0 
r -1 0 

0 r 0 1 0 

r 0 0 -1 0 
r 1 -1 0 

0 r + ~ +~ 0 
0 -€ r-€ 0 

0 -1 r 
0 -1 0 0 r 

0 0 r 0 
1 0 -1 1 r 

0 -1 0 0 r 

TABLE II. Canonical elementary Hermitian matrix with a single 
real eigenvalue r in the odd-dimensional case. 

r 0 0 -1 0 
r -1 0 

0 r 0 0 

r 0 -1 0 
r ~ 0 1 

0 r 1 0 
1 0 -€ r 
0 -1 0 r 

0 0 r 0 
1 0 -1 r 

0 -1 0 0 r 

TABLE III. Canonical elementary Hermitian matrix with a complex 
conjugate pair of nonreal eigenvalues r ± is. 

r 0 0 -1 is 

r -1 is 

0 r is 0 

r 0 0 -1 is 

r 1 -1 is 
0 r is 0 
0 is r 0 

is -1 r 1 
is -1 0 0 r 

0 is r 0 
is -1 r 

is -1 0 0 r 
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and a single real eigenvalue, possibly degenerate. 
There are only two possible breakups of C2(1, 1) as 
an orthogonal direCt sum of maximal index subspaces, 
namely (+ -) and (+)( -). The correspondence 
between spectral cases and maximal index breakups 
is clearly as follows. The spectral case of a real pair of 
distinct eigenvalues can only correspond to the 
breakup (+)( -), while the spectral case of a con­
jugate pair of nonreal eigenvalues can only correspond 
to the breakup (+ -). On the other hand, the degen­
erate spectral case of a single real eigenvalue could 
correspond to either the breakup (+ -) or the 
breakup (+)( -). In terms of B, C, and D, the 
degenerate spectral case occurs whenever B2 + C2 = 
D2; but this leads to a breakup of the type (+)( - ) 
only in the very special case B = C = D = 0 and 
of the type (+ -) otherwise. The canonical forms of 
matrices in each case, as well as the generators of 
representatives of each equivalence class of one­
parameter subgroups of U(1, 1) and SU(1, 1), are 
given in Table IV. In determining the conjugacy 
classes of one-parameter subgroups of U(I, 1), listed 
in column four, we have to remember that two 
matrices differing by a real nonzero factor, or by an 
inner automorphism of the group, generate con­
jugate subgroups. For the group SU(1, 1), only 
traceless generators are permitted, giving the three 
conjugacy classes of one~parameter subgroups listed 
in column five. It is easy to see that the SU(I, I) 
subgroup in row one generates rotations, the one 
in row two generates pure Lorentz boosts along one 
of the space axes, and that in row three generates 
Euclidean translations. The limitations placed on the 

parameters in the matrices are necessary to take 
account of the equivalences otherwise existing within 
the individual classes. For example, since we have 

(
i 0 .) (~ is) (- i ~) = ( r. - is) , 
o -/ lS r 0 I -lS r 

in this case we restrict ourselves to the case S > O. 
In three dimensions we need only study the Hermit­

ian space C3(2, 1). Although a classification of the 
subgroups of SU(2, 1) has already been given,I6 we 
repeat it in Table V for completeness as well as to 
conform to our present slightly different choice of 
canonical basis. 

The possible maximal index decompositions of the 
three-dimensional Hermitian space C3(2, 1) are 
( +)( +)( -), (+)( + -), and (+ + -). The canonical 
matrices, generators, eigenvectors, and eigenvalues 
are summarized in Table V. 

In four dimensions we have to consider both the 
Hermitian spaces C4(2, 2) and C4(3, 1). The Dirac 
spinor space C4(2,2) is the case of interest for the 
conformal group. The possible maximal index de­
compositions of the space C4(2, 2) are (+)( +)( -)( -), 
( +)( + -)( -), (+ -)( + -), (+)( + - -), 
(++-)(-), and (++--). Again we treat each 
of these cases separately, as summarized in Table VI. 

The results for the other four-dimensional Hermitian 
space C4(3,1), related to the groups U(3, 1) and 
SU(3, 1), are summarized in Table VII. These groups, 
which may be considered as possible complex exten­
sions of the Lorentz group, have been studied in 
connection with relativistic hadron theory.46 The 
maximal index decompositions of C4(3, 1) are 

TABLE IV. The space C2( + -). 

Case 

1. 

2. 

3. 

Maximal index 
dacomposition, 
eigenvalues, and 

eigenvectors 

(+)(-) 

r - s~ [~J, 

r + s~ [~] 

(+-) 

r + is~ GJ. 
r - is~ [_!] 

Canonical form of 
the matrix 

[
r-s 0] 

o r + S 

-00 <r,s<oo 

[ ~ is] 
IS r 

-00 < r < 00,0 < s < 00 

[r+E E] 
-E r - E 

-00 < r < 00, E = ±1 

Generator of U(1, 1) 
subgroup 

(a) s = 1, - 00 < r < 00 

(b) s = 0, r = 1 

s=l,O~r<oo 

(a) r = 1, E = ± 1 
(b) r = 0, E = 1 

Generator of 
SU(1, 1) subgroup 

S = 1, r = 0 

s = 1, r = 0 

r = 0, E = 1 
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( + )( + )( + )( - ), (+)( + )( + -), and (+)( + + - ). 
Note that the space (+ + + -) itself is not a maximal 
index space and hence cannot be an elementary 
invariant subspace. A related consequence is that 
every Hermitian operator acting on C4(3, 1) has at 
least one eigenvector with positive norm. 
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APPENDIX 

As a convenience to the reader, we sketch here the 
proofs of various assertions made about the structure 
of Hermitian operators with respect to an indefinite 
metric. Our first lemma generalizes the familiar 
arguments concerning orthogonality of eigenvectors 
to the case of an indefinite metric, where generalizeq 
eigenvectors have to be considered. 

Lemma: If Y is a Hermitian linear operator on a 
finite-dimensional Hermitian space V and if Cl and C2 
are two complex numbers which are not complex 
conjugates of each other, then the primary components 
V~l and V~· are orthogonal. 

Proof' The kernels of the various powers (y - c1I)P 
for increasing p form an ascending chain of subspaces 
which eventually terminates, so that for sufficiently 
large p we obtain the primary component V;l. We 
shall show by induction on p that the kernel of 
(y - clI)p is orthogonal to the primary component 
V;'. For p = 1, the argument is simple because if 
(y - cll),!/, = ° and (y - c21)qcp = 0, then ° = 
ip(y - c2 1)Qcp = (ct - c2)QipCP, implying that ipcp = 0. 
Suppose now that the kernel of (y - cll)P is orthog­
onal to V;'. If,!/, belongs to the kernel of (y - cll )pH, 
then (y - cll),!/, belongs to the kernel of (y - cll)P 
and is therefore orthogonal to V~'. For any vector 
cf> E V;· there exists a smallest integer q such that 
ip(y - c2 1)qcf> = 0. If q > 0, then 

(y - clI),!/, (y - c21)Hcf> = 0, 

and it follows that (ct - c2) • ip(y - c21)Hcf> = 0, 
so that ip(y - c21)Hcf> = 0, in contradiction with the 
assumed minimal property of q. Hence q = ° and 
ipcf> = 0, showing that the kernel of (y - cl I)P+1 is 
orthogonal to V~· and thereby completing the induc­
tive argument. QED 

In the study of elementary invariant subspaces we 
used some results about cyclic vectors of nilpotent 
Hermitian operators. Since we can alter the trace of a 
Hermitian operator by adding a suitable multiple of 
the identity operator, it is sufficient to study the 
structure of traceless elementary Hermitian operators. 
If y is a traceless elementary Hermitian operator on a 
finite-dimensional nonsingular space V, then either 
V = V~ or else V = V~s EB V;iS for some real s :;6 0. 
Hence such operators are either nilpotent, that is, 
yn = ° for some positive integer n, or else they 
satisfy the equation (y2 + s21)P = ° for some p > ° 
and s :;6 0. We prove the required result here for the 
nilpotent case more generally without assuming the 
operator to be elementary. 

Lemma: If a Hermitian operator yon a Hermitian 
space V is nilpotent with ym = 0, then the cyclic 
invariant subspace S generated by a vector,!/, in V is 
a nonsingular m-dimensional subspace iff ipym-l'!/' :;6 0. 

Proof' Since S is spanned by,!/" y,!/" ... , ym-l'!/', 
any vector cp E S (\ S 1- can be written as a linear 
combination 

cp = (col + ClY + ... + cm_Iym-l)'!/', 

and ipykcp = ° for all k. Since ym = 0, we have ° = ipym-lcf> = coipym-l'!/', and, if ipym-l'!/' :;6 0, then 
we have Co = 0. By a similar argument, also Cl = 
... = Cm- l = 0, so that cp = ° and S is nonsingular. 
Moreover, this same argument also shows that the 
vectors '!/', y,!/,," . , ym-l'!/' are linearly independent, 
and hence S has dimension m. Conversely, if 
ipym-l'!/' = 0, then any vector 

cp = (col + ClY + ... + cm_Iym-I)'!/' 

in S satisfies ipym-Icf> = coipym-l'!/' = 0, and hence 
ym-l'!/' E S (\ S 1-. If S were nonsingular, this would 
imply that ym-l'!/' = 0, so that the dimension of S 
would be less than m. QED 

The usual cyclic decomposition theorem in the 
theory of linear operators can now be strengthened 
as follows for nilpotent Hermitian operators. 

Theorem: If Y is a nilpotent Hermitian operator on 
a finite-dimensional nonsingular Hermitian space V, 
then V is the orthogonal direct sum of a finite set of 
nonsingular cyclic invariant subspaces, 

V = Sl -.l ... -.l Sn. 

Proof' Since y is nilpotent, there exists a smallest 
integer m such that ym = 0. If m = 1, then y = 0, 



                                                                                                                                    

Maximal index decomposition, 
Case eigenvalues, and eigenvectors 

1. (+)( +)(-) 

a + b - C ~ [~l a + b + c ~ [!l 
a-2b~G] 

2. (+)(+-) 

a ~ Gl r ± is ~ [±IJ 
3. (+)(+-) 

a - 2b ~ [il a + b ~ [-!J 
4. (++-) 

r~[_n 

TABLE V. The space C3(++_). 

Canonical form of the matrix 

[

a+b-C 0 0 ] 
o a+b+c 0 
o 0 a-2b 

- CJJ < a, b < CJJ, 0 .::;; c < CJJ 

[
a 0 OJ 
o : is 
o IS r 

-CJJ < a, r < CJJ, 0 < s < CJJ 

[

a-2b 0 0 ] 
o a+b+€ € 

o -€ a + b - € 

-CJJ <a,b < CJJ,€= ±1 

[

r 
1 r 

o -1 !J 
-00 <r<oo 

Generator of U(2, 1) subgroup 

(a) c = 1, - CJJ < a, b < CJJ 

(b) c = 0, b = 1, -CJJ < a < CJJ 

(c) b = c = 0, a = 1 

s = 1,0'::;; a < CJJ, -CJJ < r < CJJ 

(a) - CJJ < a < CJJ, b = 1, € = ± 1 

(b) a = 1, b = 0, € = ±1 
(c) a = b = 0, € = 1 

(a) r = 1 
(b) r = 0 

Generator of SU(2, 1) subgroup 

(a) c = 1, -00 < b < 00, a = 0 
(b) a = c = 0, b = 1 

s = 1,0 .::;; a = -2r < 00 

(a) a = 0, b = 1, € = ± 1 
(b) a = 0, b = 0, € = ±1 

r=O 

o 
Z 
t'I1 , 
'"0 
> 
~ 
> 
~ 
t'I1 ..., 
t'I1 
~ 

rIl 
c::: 
a; 
o 
~ 
o 
c::: 
'"0 
rIl 

o 
'"Ij 

c::: z -..., 
> 
~ 
><: 
o 
~ 
o 
c::: 
'"0 
rIl 

-
~ 
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TABLE VI. The space C4( + + - - ). 

Maximal index decomposition, 
Case eigenvalues, and eigenvectors Canonical form of the matrix Generator of U(2, 2) subgroup Generator of SU(2, 2) subgroup 

1. ( +)( +)( - )( -) ["+r' 0 0 jJ (a) -oo<a,b<oo,c=l, (a) a = 0, 0 ~ b < 00, c = 1, 

a +b- ,- [~la +b+ ,-m a+b+c 0 O~d<oo O~d<oo 
0 a-b-d (b) -00 < -b ~ a < 00, (b) a = 0, 0 ~ b < 00, :--
0 0 c = 0, d = 1 c = 0, d = 1 

-00 < a, b < 00, 0 ~ c, d < 00 (c) -oo<a<oo,b=l, (c) a = 0, b = 1, c = d = 0 0 

a-b-d-m·a-b+d-m 
c=d=O '"T1 

(d) a = 1, b = c = d = 0 
t:C 
ttl 
t"' -Z 

2. (+)( + -)(-) 

[T 
0 0 

aU 
-oo<b<a<oo, -00 < b < a = -r < 00, s = 1 '"T1 

a-b- [~la +b- [1]. 
r is -oo<r<oo,s=l > 

Z 
is r ~ 
0 0 ttl 

-00 < a, b, r < 00,0 < s < 00 > 

'±i>-[±U 
Z 
t:::l 
'"C:j 

~ -3. (+)(+ -)( -) 

[T 
0 0 

aU 
(a) -00 < b ~ a < 00, (a) r = -a = 1, Z 

~ 

a -b- [ila +b- [1]. 
r + € € r=l,€=±l -00 < b ~ -1, € = ±1 ttl 
-€ r - € (b) b = 1, 1 ~ a < 00, (b)r=a=O,b=-l, 

:;tl 
Z 

0 0 r = 0, € = ±1 € = ±1 -~ 
-00 < a, b, r < 00, € = ±1 (c) a = 1, b = 0, r = 0, (c) a = b = r = 0, € = 1 N 

'-[-U 
€ = ±1 

(d) a = b = r = 0, € = +1 

4. (+-)(+-) 

[' 0 

0 

~] 
s = 1, 1 ~ U < 00, s=l,l~u<oo, 

,±U-Ul t± la- [±~ 
o 1 iu O~r<oo,-OO<I<OO o ~ r = -I < 00 

o iu 1 

is 0 0 
-00 < r, 1 < 00,0 < s ~ u < 00 



                                                                                                                                    

5. (+-)(+-) 

'H-Ult-[ -~ 
6. (+-)(+-) 

'-Ult-[ -~ 
7. (+)(+--) 

a+3b- [na -b- U] 
8. (++-)(-) 

a - b - Hl a +3b - m 
9. (++--) 

,+U- [}-,,- U] 
10. (++--) 

'-u] 

[

r 0 0 is] 
o t+E E 0 
o -E 1- E 0 
is 0 0 r 

-00 < r, I < 00,0 < S < 00, E = ±1 

[

r + El 0 0 El J 
o 1 + E2 E. 0 
o -Ea 1- Ea 0 

-El 0 0 r - E 
-00 < r:::;; I < 00, Elo E2 = ±1 

[

a + 3b 0 0 0] 
o a - b -1 0 
o 1 a-b 1 
o 0 1 a-b 

[T 
- 00 < a, b < 00 

a-b 
-1 

o 

o 0] o 
a-b 0 

o a + 3b 
- 00 < a, b < 00 

[

r 

1 r 
1 is 
is -1 

-1 is] is 1 

r 1 
r 

-00 < r < 00,0 < S < 00 

[

r -1 0] 
1 r+E E 1 
1 -E r - E 1 

o -1 r 

-00<r<oo,E=±1 

S = 1,0:::;; r < 00, 
-00 < I < 00, E = ±1 

(a) r = 1, 1 :::;; III < 00, 
El, E. = ±1 

(b) r = 0, 1 = 1, Elo E. = ±1 
(c) r = 0, I = 0, El = 1 

E. = ±1 

(a) b = 1, - 00 < a < 00 
(b) b = 0, a = 1 
(c) b = 0, a = 0 

(a) b = 1, -00 < a < 00 
(b) b = 0, a = 1 
(c) b = a = 0 

s=1,O:::;;r<00 

(a) r = 1, E = ± 1 
(b) r = 0, E = 1 

S=1:E="±1, 
0:::;; r = -I < 00 

(a) r = -I = 1, Elo E. = ±1 

(b) r = I = 0, El = 1, E. = ±1 

(a) a = 0, b = 1, 
(b) a = b = 0 

(a) a = 0, b = 1 
(b) a = 0, b = 0 

r = 0, S = 1 

r = 0, E = 1 

o 
Z 
tTl 

I 

"tI 
> 
~ 
> 
:::: 
tTl 
,..;j 
tTl 
~ 

tf.l 
c::: 
t:I:I 
o 
~ 
o 
c::: 
"tI 
tf.l 

o 
"T1 

c::: 
Z -,..;j 
> 
~ 
t-<: 

o 
~ 
o 
c::: 
"tI 
tf.l 

.-
a 
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TABLE VII. The space C4(+++_). 
VI 
N 

Maximal index decomposition, Generator of U(3, 1) Generator of SU(3, 1) 
Case eigenvalues, and eigenvectors Canonical form of the matrix subgroup subgroup 

1. (+)( +)( +)( -) [a +b 0 0 0] (a) - 00 < a < 00, b = 1, (a) a = 0, b = 1, 

a +b - [~l a +h + ,-m o a+b+c 0 0 0::;; c, d < 00 0::;; c, d < 00 
o 0 a+b+c+d 0 (b) -00 <a< oo,b=O, (b)a=b=O,c=l, 
o 0 0 a - 3b - 2c - d c=l,O::;;d<oo O::;;d<oo 

-00 < a, b < 00,0::;; c, d < 00 (c) -oo<a<oo, (c) a = b = c = 0, 

a +b+dd-m· a- lb -" -d-m 
b = c = 0, d = 1 d=l :-< 

(d) a = 1, b = c = d = 0 0 

"T1 

[a - b 0 
t:J:j 

2. (+)(+)( +-) 0 

I~] 
s = 1, - 00 < a, r < 00, s=l,O::;;b<oo, tIl 

a - b - (il a +b - m o a + b 0 O::;;b<oo -oo<a=-r<oo t"'" ...... 
o 0 r Z 
o 0 is 

"T1 
:> 

-00 < a, r < 00,0::;; b < 00, Z 

'H-[j 
O<s<oo 

...,;j 
tIl 

:> 
Z 
tj 

"0 
3. (+)( +)( +-) [a - b -, 0 0 

a+~J 
(a) - 00 < a, b < 00, (a) a = 0, - 00 < b < 00, 

a -6-0- [il a -b+,- m· 
o a-b+c 0 c=l, .. =±l c=l, .. =±l ~ ...... o 0 a+b+ .. (b) -00 < a < 00, b = 1, (b) a = 0, b = 1, c = 0, Z 
o 0 - .. c = 0, .. = ±1 .. = ±1 ...,;j 

tIl 
-00 < a, b < 00,0::;; c < 00, .. = ±1 (c) a=l,b=c=O, (c) a = b = c = 0, :;c 

a+b-Lu 
.. = ±1 .. = 1 Z ...... 

(d) a = b = c = 0, .. = 1 ...,;j 
N 

4. (+)(++-) 

[1" 
0 0 

!] 
(a) r = 1, - 00 < a < 00 (a) a = 0, r = 1 

a -3,- [~l'- L~ 
r (b) r = 0, a = 1 (b) a = 0, r = 0 
1 r (c) a = r = 0 
0 -1 

-oo<a,r<oo 
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and every subspace of V is invariant; any orthogonal 
direct sum decomposition of V into nonsingular lines 
does the trick. Ifm > 1, then, by the assumed minimal 
property of m, we have ym-l =fi 0. If ipym-l1jJ = ° for 
aJ11jJ in V, then, by polarization, we obtain ipym-lrp = ° 
for all 1jJ, rp in V, and, since V is nonsingular, this 
would imply that ym-l = 0, a contradiction. Hence 
there is a vector 1jJ in V with ipym-l1jJ =fi 0, and, by 
the lemma, the cyclic invariant subspace S generated 
by 1jJ is a nonzero nonsingular subspace. Then we may 
write V = S 1.. S1-, and the argument may be repeated 
with S1- replacing V. QED 

As a corollary of this theorem, we may conclude 
that elementary nilpotent Hermitian operators are 
indecomposable. We also prove an analogous 
theorem for the case of a Hermitian operator y when 
y2 + s21 is nilpotent. 

Theorem: If y is a Hermitian operator on a finite­
dimensional nonsingular Hermitian space and if 
y2 + s21 is nilpotent for some real s =fi 0, then there 
exist nonzero totally isotropic indecomposable sub­
spaces S± such that S+ EB S_ is a nonsingular invariant 
subspace. 

Proo!, Since the nonsingular space V is the direct 
sum of the totally isotropic primary components 
V;-iS, it follows that, for every nonzero vector in 
V~s, there exists another vector in V;iS such that 
these two vectors are not orthogonal. If there is a 
vector rp+ in V~s such that (y - isl)mrp+ =fi 0, then 
there is a vector rp_ in V;iS such that 1>-(y - is 1 )mrp+ =fi 
0, and hence (y + isl)mrp_ =fi 0. Let p > ° be the 
smallest integer such that (y2 + s21)P = 0. If 
(y - isl)P-l is zero on V~s, then (y + isl)P-l is zero 
on V;is, and hence (y2 + s21)P-l = 0, a contradiction. 
Hence there exist vectors rp± in V;-iS such that 
1>-(y - isl)P-lrp+ =fi 0. The cyclic subspaces S± gen­
erated by rp± are totally isotropic and primary, since 
S± c V;-is , and hence are indecomposable. Finally, 
one may verify that 1>-(y - isl)P-lrp+ =fi ° implies 
that the radical of S+ EB S_ is zero. QED 

Combining all these results, our main conclusion 
is that the primary components of Hermitian opera­
tors in nonsingular elementary Hermitian spaces are 
indecomposable. 

We next study the metric signatures of the ele­
mentary subspaces. 

Theorem: Elementary invariant subs paces of a 
Hermitian operator on a nonsingular Hermitian 
space are maximal-index nonsingular subspaces. 

Proof: If Y is an elementary Hermitian operator on 
a nonsingular space V, then V is either itself inde­
composable or the direct sum of two totally isotropic 
indecomposable subspaces. In the latter case it 
follows from the well-known hyperbolic enlargement 
theorem38 •44 that V is an even-dimensional maximal­
index space. In the former case, we may subtract a 
real multiple of the identity from y to obtain a nil­
potent operator. If y is nilpotent and if rp is a cyclic 
vector for V, then every other cyclic vector is of the 
form p(y)rp, where p(y) is a polynomial in y whose 
constant term is nonzero. By constructing a suitable 
polynomial, it is possible to show that there exists a 
cyclic vector rp in V such that 1>ykrp = ° for all k 
except for k = n - I, where n = dim V. We could 
multiply rp by a suitable complex factor to make 
1>yn-Irp = ± I. If m = [nI2] is the largest integer not 
exceeding n12, then the vectors rp, yrp,' .. , ym-lrp 
span a totally isotropic subspace of V, and it follows 
that V has maximal index. QED 

It is now a simple matter to construct orthonormal 
bases giving the exhibited canonical forms for ele­
mentary Hermitian operators. The choice of a canon­
ical orthonormal basis is, of course, not unique, and 
questions of elegance influence the decision. Let y be 
an elementary Hermitian operator acting on an n­
dimensional nonsingular Hermitian space V. If 
V = V~, then (y - rl)n = 0, and there is a cyclic 
vector rp such that 1>(y - rl )"rp = Ebk •n _ 1 , where 
E = ± 1. In the even-dimensional case n = 2m, we 
obtain an orthonormal basis 1jJ±1' ... , 1jJ±m by writing 

In the odd-dimensional case n = 2m + 1, we put 
1jJo = (y - rl)mrp, and 

If V = V~+iS EB V~-iS, there are vectors rp± which are 
cyclic vectors for V;±iS, respectively, such that 
1>-[y - (r + is)l]k-lrp+ = b".m_l, where dim V = 2m. 
In this case an orthonormal basis is given by 

1jJ±k = 2m- k [y - (r + is)l]k-lrp+ 

+ 2k- m- 1 [y _ (r - is)l]m-krp_. 
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A class of representations of the current density algebras is considered by introducing a factorized 
form involving algebras containing the one satisfied by the integrated charges as a subalgebra. 

Certain simple types of representations of the with 
algebra a{l) = 1, b{l) = 0. (9) 

[Vt(x), V~(y)] = iEiikV~(X)O(x - y), XO = l (1) 

of the isospin charge densities have been considered in 
Refs. 1 and 2. Our results will be closely related to 
those of Ref. 1. 

The conditions (7), (8), and (9) correspond, respec­
tively, to Eqs. (26), (27), and (28) of Ref. 1, where 
some explicit solutions are considered, along with 
possible physical interpretations. 

The smeared operators 

V\ ({!) = J V~(x)({!(x)d3x 
Let us note that, in deriving the above relations, we 

did not even have to use the (known) matrix elements of 
(2) the algebras (I, K),. This is indicative of a much more 

general result. satisfy 

For ({!l = ({!2 = 1, we have the usual isospin algebra 
[V(l) = I]. More generally, we see that V(IP) trans­
forms as a vector operator under the action of V(l). 

(3) Let us consider some charge symmetry algebra,4 
say SU2 , SU3 , or something more complicated with 
the structure constants c p , which we need not 

a Y 
specify for the moment. 

The factorized forms of the solutions for V( ((!) 
found in Ref. 1 [considering the matrix elements of 
V(IP) acting on the states III3») contain terms corre­
sponding to the matrix elements of the generators of 
0(4) (or E3 , related to 0 4 through contraction), 
according to the domains of variation of some other 
parameters which appear.3 

This fact suggests the following point of view, 
permitting considerable simplification and general­
ization (and also giving a clearer insight into the 
structure of the solutions). 

Let us postulate the form 

V«({!) = a(IP)I + b«({!)K, (4) 
where 

Let 

i = 1,2, ... , n, say, 

where 

[Aa, Ap] = i l capyAy, 
y 

[Aa, T~] = i l CapyftiTi, 
y 

[T:, T 1] = i l CaPY'iiAy. 
y 

(10) 

(11) 

(The parameters fti and 'ii are supposed to satisfy the 
usual hermiticity and other possible consistency 
restrictions.) 

Substituting in 

[VilPl)' Vp«({!2)] = i l capyV/({!l({!2), (12) 
y 

[Ii, Ii) = iEiiklk, [Ii, Ki) = iEiikKk, 

[Ki, Ki] = 'iEUk1k. (5) we obtain (independently of the ca(JY and as simply as 
before) the constraints For' = +1, -1,0, we obtain the algebras 0(4), 

0(3, 1), and £(3), respectively. 
Substituting (4) in (3), we obtain, very simply and 

directly, the constraints 

[a(IPJ, a«({!2)] = [b«({!l), b«({!2)] = [a«({!l), b(1P2)] = 0, 

(6) 

[a«({!l), a«({!2)] = [a«({!l), bi (1P2)] = [bi«({!l), b;(({!2)] = ° 
(13) 

and 

a( IPI)b( 1P2) + a( 1P2)b( IPI) = b( IPIIPJ, 

a( ({!I)a( 1P2) + 'b( 1P1)b( 1P2) = a( IPlIP2), (8) 

1055 

a(1) = 1, bi(l) = O. (16) 
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(We have Pi to emphasize that Pi = 0 eliminates Ti 
even for ~ij "" 0.) 

If we consider the algebra satisfied by the Fourier 
transforms 

~1 = 1, ~2 = 0: 

a(K) = cosh A' K, b1(K) = ±sinh A' K, 

b2(K) = C2 sinh A • K; (25) 

(17) ~I = -1, ~2 = 0: 

namely, 

[Yo,(K1) , VP(K2)] = i ~;Capyv;,(KI + K2), (18) 
y 

then by postulating 

J!;,(K) = a(K)Aa + 2 bi(K)T;, i =' 1, 2, ... , n, 
i (19) 

the corresponding modifications of (13)-(16) are 
evident. 

In this article we will make no attempt to obtain 
exhaustive solutions or to examine their possible 
significances. We will, however, try to illustrate, by 
taking a particularly simple case of (19), how on 
increasing n one can continue to find solutions for 
the a's and the bi through simple modifications. The 
interest of increasing n (say from I to 2) is that the 
irreducible spaces of the states on which the V(K)'s 
act will now be characterized by the supplementary 
parameters corresponding to the larger algebra, giving 
more possibilities for eventual interpretations. 

Let us consider the algebra 

For ~1 = ~2 = 0, we will call this algebra E3(2). We 
have calculated the corresponding matrix elements in 
a rather different context,5 where its connection with 
rigid rotators have been noted. 

Let 

V(K) = a(K)I + b1(K)T(1) + b2(K)T(2). (21) 

The required constraints are (apart from the usual 
commutativity) 

a(Kl)a(K2) + 2 ~ibi(Kl)b;(K2) = a(KI + K2), (22) 
i=I.2 

with 

a(O) = 1, bi(O) = 0, i = 1,2. 

The solutions corresponding to the restricted cases 
(b2 = 0 or, corresponding to nonmixing of I spin, 
b1 = b2 = 0) need hardly be written separately. So 
let us note only the six following simple solutions: 

Y Y (,..K "·K ~1 = ~2 = 0: a K) = e , b;(K) = /Li • Ke ; (24) 

a(K) = cos A' K, b1(K) = ±sin A' K, 

(26) 

~1 = ±1, '2 = 1=1: 
a(K) = e".K, bl(K) = ±b2(K) = /L' KeA-K; (27) 

~1 = +1, ~2 = +1: 

a(K) = cosh A • K, 

bI(K) = ±b2(K) = ±t sinh A' K; (28) 

, = -1, ~2 = -1: 

a(K) = cos A • K, 

bl(K) = ±b2(K) = ±t sin A . K. (29) 

Such simple constructions as above lead to multi­
plicity-free representations as in Ref. 1. By introducing 
suitable tensor operators (and not only the generators) 
in the representations of the V's, one can hope to 
introduce a multiplicity structure if that is considered 
to be desirable. 

We would like to make one final remark. Since, as 
emphasized, the conditions (6)-(9) or (22)-(23) are 
independent of the structure constants (c ) of the 
charge algebra, the internal symmetry is tpparentIy 
decoupled from space-time in our simple model. But 
it is also to be noted that, due to the presence of the 
a's and the b's, the states on which the current 
densities are supposed to act can be parametrized by 
using the larger algebras appearing in (10) and (11). 
This parametrization, in turn, depends essentially on 
the charge algebra we use as our starting point. In 
this sense the "local" nature of the density algebra 
may be said to interact non trivially with the internal 
symmetry, even in our factorized model. 

It would be of interest to examine what possible 
higher symmetries can be introduced in a physically 
significant fashion for the "intrinsic" factors of the 
charge densities, starting from a given symmetry group 
for the charges. 
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This is a minor error (inconsequential to our proof of half-range completeness) 
infinity of the canonical solution 4»o(z). In general, Eq. (51) should read 

regarding the form at 

[

ZKl 

lim 4»o(z) 
z .... "" 0 

and thus Eq. (53) should read 

where a and b are constants. 
In addition, a printing format change subsequent to the galley proofs has made Eq. (42) incorrect; it 

should read 
Ig(,u) - 11 W,u7T 

= 
l,u - W l,u - W 11 + tw,u In [(1 - ,u)/(1 + ,u)] - tw,u7Til 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 6 JUNE 1971 

Erratum: Bounds for Effective Bulk Modulus of Heterogeneous Materials 
[J. Math. Phys. 10, 2005 (1969)] 

MELVIN N. MILLER 
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Equations (2.23) and (2.24) should read as follows: 

K* < .!.(1 + r{rx _ 1) _ cp(1 - cp)(rx - 1)2 ) 

(K1K2}i - rxi rx - (rx - l)cp + 2y{1 - fcp + t{3(4cp - 1) + 3({3 - 1)[G1(1 - cp)2 - G2cp]2} , 

_ _ K_*~ i( _________________ cp~(~I_-_cp~)~(rx~-~I~)2 _________________ )-1 > rx cp(1 - rx) + rx -
(K1K 2)! - 1 + cp(rx - 1) + (3rx/8{3y)(3({3 - 1){3[G2cp2 - G1(1 - cp)2] - tcp} + 3({3 -1», . 

All figures and calculations based on these expressions in the article are correct as shown. 
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Equations (2.23) and (2.24) should read as follows: 

K* < .!.(1 + r{rx _ 1) _ cp(1 - cp)(rx - 1)2 ) 

(K1K2}i - rxi rx - (rx - l)cp + 2y{1 - fcp + t{3(4cp - 1) + 3({3 - 1)[G1(1 - cp)2 - G2cp]2} , 

_ _ K_*~ i( _________________ cp~(~I_-_cp~)~(rx~-~I~)2 _________________ )-1 > rx cp(1 - rx) + rx -
(K1K 2)! - 1 + cp(rx - 1) + (3rx/8{3y)(3({3 - 1){3[G2cp2 - G1(1 - cp)2] - tcp} + 3({3 -1», . 

All figures and calculations based on these expressions in the article are correct as shown. 
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